Perencanaan proses pembuatan dies forging paku tapal kuda

Planning the process for making horseshoe nail forging dies

SKRIPSI

Oleh:

Nama: Arnold Muhammad Rudiyansyah NPM: 193030015

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS PASUNDAN BANDUNG 2025

SURAT PERNYATAAN

Saya yang bertanda tangan di bawah ini,

N a m a : Arnold Muhammad Rudiyansyah

Nomor Pokok Mahasiswa : 193030015

Program Studi : Teknik Mesin FT UNPAS

Dengan ini menyatakan bahwa:

 Dalam Skripsi yang saya kerjakan ini tidak terdapat karya yang pernah diajukan/ditulis oleh orang lain untuk memperoleh gelar dari suatu perguruan tinggi,

- Sepanjang pengetahuan saya, tidak terdapat karya atau pendapat yang pernah ditulis dan diterbitkan oleh orang lain kecuali yang secara tertulis diacu/dikutip/disitasi dalam naskah ini dan disebutkan dalam referensi,
- 3. Naskah laporan skripsi yang ditulis bukan dilakukan secara *copy paste* dari karya orang lain dan mengganti beberapa kata yang tidak perlu.
- 4. Naskah laporan skripsi bukan hasil plagiarism.

Apabila dikemudian hari terbukti bahwa pernyataan ini tidak benar maka saya sanggup menerima hukuman/sanksi apapun sesuai peraturan yang berlaku.

Bandung, 22 April 2025

Penulis,

Arnold Muhammad R

SURAT PERNYATAAN PERSETUJUAN PUBLIKASI

Yang bertanda tangan di bawah ini, sebagai sivitas akademik Universitas Pasundan, saya:

N a m a : Arnold Muhammad Rudiyansyah

NPM : 193030015

Program Studi : Teknik Mesin FT UNPAS

Jenis Karya : Skripsi

Menyatakan bahwa sebagai pengembangan ilmu pengetahuan dan teknologi, saya menyetujui memberikan kepada Universitas Pasundan Hak Bebas Royalti Noneksklusif atas karya ilmiah saya yang berjudul:

Perencanaan Proses Pembuatan Dies Forging Paku Tapal Kuda

Beserta perangkat yang ada (jika ada). Dengan Hak Bebas Royalti Nonekslusif ini Universitas Pasundan berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pakalan data (database), merawat, dan mempublikasikan skripsi saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Bandung, 22 April 2025

Yang menyatakan,

METERA TEMPEL

Arnold Muhammad R

LEMBAR PENGESAHAN PEMBIMBING

Perencanaan Proses Pembuatan Dies Forging Paku Tapal Kuda

Nama: Arnold Muhammad Rudiyansyah

NPM: 193030015

Pembimbing Utama

sufar,

Dr. Ir. Gatot Santoso, M.T.

Pembimbing Pendamping

Dr. Ir. Ade Bagdja, MME.

LEMBAR PENGESAHAN PENGUJI

Perencanaan Proses Pembuatan Dies Forging Paku Tapal Kuda

Nama: Arnold Muhammad Rudiyansyah

NPM: 193030015

Tanggal sidang skripsi: 22 April 2025

Ketua : Dr. Ir. Gatot Santoso, M.T.

Sekretaris : Dr. Ir. Ade Bagdja, MME.

: Anggota Dr. Ir. Dedi Lazuardi, DEA.

: Anggota Dr. Ir. Endang Achdi, M.T.

KATA PENGANTAR

Puji dan syukur panjatkan kehadirat Allah Subhanahu Wata'ala tuhan yang maha esa berkat

rahmat, hidayah, karunia-Nya kepada kita semua sehingga penulis mampu menyelesaikan

laporan skripsi dengan judul "Perancangan Proses Pembuatan Dies Forging Paku

Tapal Kuda" salawat serta salam terlimpah curahkan kepada Nabi Muhammad SAW.

Pada saat ini, Penulis ingin mengucapkan terima kasih kepada semua yang telah

memberikan dukungan baik dari segi semangat maupun materi, sehingga laporan skripsi

ini dapat diselesaikan. Ucapan terima kasih ini ditunjukan kepada:

1. Bapak Dr. Ir. Sugiharto, M.T. selaku Ketua Program Studi Teknik Mesin

Universitas Pasundan.

2. Bapak Dr. Ir. Gatot Santoso, M.T. sebagai pembimbing utama Skripsi, telah

memberikan bimbingan dan pengatahuan yang berguna dalam menuntaskan

laporan ini.

3. Bapak Dr. Ir. Ade Bagdja, MME. Sebagai pembimbing pendamping Skripsi, saya

telah diberikan bimbingan dan pengetahuan yang bermanfaat dalam proses

penyelesaian laporan ini.

4. Kedua orang tua yang tak henti-hentinya mendo'akan dan memberikan dorongan

semangat kepada Penulis untuk menyelesaikan laporan ini.

5. Keluarga Teknik Mesin 2019 yang telah memberikan motivasi dan saling

mengingatkan untuk menyelesaikan laporan.

Penulis menyadari bahwa laporan skripsi ini masih banyak kesalahan dan kekurangan

bahkan jauh dari kata sempurna. Oleh karena itu, penulis sangat mengharapkan kritik dan

saran yang bersifat membangun demi kesempurnaan laporan skripsi ini, atas perhatian dan

masukannya, penulis ucapkan terima kasih.

Bandung, 22 April 2025

Penulis.

Arnold Muhammad R

V

DAFTAR ISI

SUR	AT PERNYATAAN	I
SUR	AT PERNYATAAN PERSETUJUAN PUBLIKASI	II
LEM	IBAR PENGESAHAN PEMBIMBING	III
LEM	IBAR PENGESAHAN PENGUJI	IV
KAT	TA PENGANTAR	V
DAF	TAR ISI	VI
DAF	TAR GAMBAR	IX
DAF	TAR TABEL	XI
ABS'	TRAK	XII
ABS'	TRACT	XIII
BAB	S I PENDAHULUAN	1
1.	Latar belakang	1
2.	Rumusan masalah	1
3.	Tujuan	2
4.	Manfaat	2
5.	Lingkup masalah	2
6.	Sistematika penulisan	
BAB	B II STUDI LITERATUR	3
1.	Paku Tapal Kuda	4
2.	Pengertian Tempa (Forging)	5
	A. Open dies Forging	
	B. Impression Die Forging	
	C. Flashless Forging	9

3.	Draft Angle	9
4.	Trimming	. 10
5.	Pemilihan Material dan Proses	. 11
	A. Material Dies Paku Tapal Kuda	. 11
	B. Material Paku Tapal Kuda	. 12
	C. Proses Manufaktur Pada Proses Perancangan Dies Paku Tapal Kuda	. 13
BAB	III METODOLOGI	14
1.	Tahapan Penelitian	. 14
2.	Jadwal kegiatan	. 18
3.	Tempat Penelitian	. 19
4.	Peralatan dan Material yang Digunakan	. 19
BAB	IV HASIL DAN PEMBAHASAN	20
1.	Penjelasan Forging Tahap 2	. 20
2.	Hasil Perhitungan Volume	. 20
3.	Gambar teknik Paku Tapal Kuda Tahap 1 (upsetting) dan Tahap 2 (forging)	. 21
4.	Gambar Teknik <i>Dies</i>	. 22
5.	Perhitungan Gaya Forging Tahap 2	. 28
6.	Rincian Anggaran	. 32
7.	Pembuatan Prototipe <i>Dies</i>	. 32
	A. Pemotongan Baja Karbon menengah S45C	. 32
	B. Proses Pembuatan Dies	. 33
8.	Pengujian Dies Paku Tapal Kuda	. 34
	A. Wire Drawing dan Pemotongan Kawat Timah	. 35
	B. Pengujian Dies Forging	. 36
	C. Hasil analisa setelah pengujian	. 38
BAB	V KESIMPULAN DAN SARAN	41
1	Kesimpulan	4 1

2.	Saran	41
DAF'	TAR PUSTAKA	42
LAM	1PIRAN	45
1.	Tabel Hasil Perhitungan	45
2.	Gambar teknik	45
3.	Dokumentasi	52

DAFTAR GAMBAR

Gambar	1. Tahapan proses pembuatan paku tapal kuda lokal [1]	1
Gambar	2. Paku tapal kuda [8]	4
Gambar	3. Standar paku tapal kuda [8]	5
Gambar	4. Ideal Forging [9]	6
Gambar	5. Forging [10]	7
Gambar	6. Open Dies Forging [11].	8
Gambar	7. Impression die forging [12]	9
Gambar	8. Draft Angle [13]	.(
Gambar	9. Trimming operation [13]	(
Gambar	10. Up Milling dan Down Milling [13]	3
Gambar	11. Slab Milling dan Face Milling [13]	3
Gambar	12. Diagram alir tahapan penelitian	. 4
Gambar	13. Paku tahap pertama	5
Gambar	14. Paku Tahap Dua	.6
Gambar	15. Paku tahap tiga	.6
Gambar	16. Paku tahap empat	.6
Gambar	17. Paku tahap lima	. 7
Gambar	18. Paku tahap enam	. 7
Gambar	19. Paku tahap tujuh	. 7
Gambar	20. Tempat kegiatan	9
Gambar	21. Paku Kuda Tahap 1.	! 1
Gambar	22. Paku Kuda Tahap 2	22
Gambar	23. Assembly Dies Tahap 2	23
Gambar	24. Assembly Forging Tahap 2 (Sesudah)	24
Gambar	25. Forging Tahap 2 (Hasil forging)	25
Gambar	26. Dies Atas Tahap 2	26
Gambar	27. Dies Bawah Tahap 2	27
Gambar	28. Sketsa paku pada tahap 1 (<i>upsetting</i>)	3.5
Gambar	29. Sketsa paku pada tahap 2 (forging)	3.5
Gambar	30. Sketsa pandangan atas untuk menghitung luas proyeksi paku tapal kuda taha	ıŗ
2 (forgin	g)	6(
Gambar	32. Material Mentah Baja S45C	12
Gambar	33. Pemotongan Baja S45C	;3

Gambar	34. Hasil pemotongan Material Awal Pemesinan	33
Gambar	35. Proses Manufaktur <i>Dies</i> Tahap 2	34
Gambar	36. Hasil Dari Proses pemesinan	34
Gambar	37. Proses wire drawing dan Pemotongan kawat	35
Gambar	38. Benda kerja tahap 2 pada proses pembentukan paku tapal kuda (hasil ta	ıhap
upsetting	g)	36
Gambar	39. Penempaan menggunakan Drop Hammer	36
Gambar	40.Benda kerja sebelum dan sesudah penempaan dan saat proses pengambila	n37
Gambar	41. Hasil penempaan tahap 2 pada proses pembentukan paku tapal kuda. (terda	apat
Flash)		38
Gambar	42. hasil penempaan dengan kriteria nilai 1	39
Gambar	43. hasil penempaan dengan kriteria nilai 0,75.	40
Gambar	44. Hasil penempaan dengan kriteria nilai 0,25.	40
Gambar	45. Assembly Dies Tahap 2	45
Gambar	46. Assembly Forging Tahap 2 (Sesudah)	46
Gambar	47. Forging Tahap 2 (Hasil forging)	47
Gambar	48. Dies Atas Tahap 2	48
Gambar	49. Dies Bawah Tahap 2	49
Gambar	50. Dies atas tahap 2 pada proses pembentukan paku tapal kuda (tanpa dime	nsi)
		50
Gambar	51. Dies bawah tahap 2 dari proses pembentukan paku tapal kuda (tanpa dime	nsi)
		51
Gambar	52. Material Mentah Baja S45C	52
Gambar	53. Pemotongan Baja S45C	52
Gambar	54. Hasil pemotongan Material Awal Pemesinan	53
Gambar	55. Alat drop hammer.	54
Gambar	56. Hasil penempaan dari tahap 1 hingga tahap 6	55
Gambar	57. Hasil penempaan proses pembentukan paku tapal kuda tahap 3	55
Gambar	58. Hasil penempaan pada proses pembentukan paku tapal kuda tahap 4	56

DAFTAR TABEL

Table 1. Jenis baja perkakas untuk die[14]	12
Table 2. Jadwal kegiatan	18
Table 3. Peralatan dan material yang digunakan.	19
Table 4. Tensile properties of Lead- Free solders [15].	29
Table 5. Rincian Anggaran Biaya	32
Table 6. Kriteria nilai hasil proses penempaan	38
Table 7. Gaya proses <i>forging</i>	45

ABSTRAK

Paku tapal kuda adalah sebuah logam berujung runcing biasanya terbuat dari material baja untuk melekatkan Sepatu kuda / ladam pada kuku kaki kuda agar ladam kuda tetap melekat dan tidak terlepas. Paku tapal kuda lokal kalah bersaing dikarenakan proses manufaktur yang dilakukan menggunakan proses konvensional juga kualitas yang masih jauh dari standar paku tapal kuda *import*. Berdasarkan latar belakang tersebut, dapat dirumuskan bahwa permasalahan utamanya yaitu kualitas paku tapal kuda lokal yang masih jauh dari standar paku tapal kuda import. Hal tersebut, yang menjadi faktor pendorong terjadinya penelitian ini. Penelitian ini berjudul Perencanaan Proses Pembuatan Dies Forging Paku Tapal Kuda yang bertujuan agar produk paku ladam kuda yang dihasilkan sesuai dengan standar khususnya dalam kualitas. Metode yang dilakukan yaitu dengan perencanaan proses desain cetakan penempaan dari operasi pembentukan paku tapal kuda menggunakan aplikasi SOLIDWORKS dan pembuatan dies forging dari proses pembentukan dari paku tapal kuda. Dies yang dibuat yaitu menggunakan material baja karbon menengah S45C berikut dengan rangka dies terbuat dari material yang sama. Perhitungan gaya yang diperlukan untuk mendeformasi material paku dalam proses forging, serta membuat prototipe dies paku tapal kuda. Proses pengujian dies dilakukan untuk mengecek hasil pembentukan paku tapal kuda dari dies yang telah dibuat. Proses simulasi pembentukan paku tapal kuda menggunakan material kawat timah (Pb). Gaya yang dibutuhkan untuk proses forging sebesar 2,875 kN. Persentase tingkat keberhasilan hasil forging pada proses pembentukan paku tapal kuda sebesar 88,57 % (155 dari 175 kali penempaan). Dies yang telah dibuat berhasil membentuk benda kerja sesuai dengan rancangan dan desain dies.

Kata kunci: Dies, Forging, Paku Ladam Kuda.

ABSTRACT

A Horseshoe nails are a pointed-tipped metal usually made of steel material to attach the horseshoe / horseshoe to the horse's toenails so that the horse's hooves remain attached and not detached. Local horseshoe nails are less competitive because the manufacturing process is carried out using conventional processes and the quality is still far from the standard of imported horseshoe nails. Based on this background, it can be formulated that the main problem is the quality of local horseshoe nails which is still far from the standard of imported horseshoe nails. This is the driving factor for this research. This research is entitled Planning the Process of Making Horseshoe Nails Forging Anniversary which aims to ensure that the horseshoe nail products produced are in accordance with standards, especially in quality. The method carried out is by planning the forging mold design process from the horseshoe nail forming operation using the SOLIDWORKS application and the manufacture of die forging from the horseshoe nail forming process. The dies made are using S45C medium carbon steel material and the dies frame is made of the same material. Calculation of the force required to deform the nail material in the forging process, as well as to make a prototype of the horseshoe nail dies. The anniversary testing process is carried out to check the results of the formation of horseshoe nails from the dies that have been made. The process of simulating the formation of horseshoe nails uses lead wire (Pb) material. The force required for the forging process is 2,875 kN. The percentage of success rate of forging results in the process of forming horseshoe nails is 88.57% (155 out of 175 forgings). The dies that have been made have succeeded in forming the workpiece in accordance with the design and design of the dies.

Keywords: Dies, Forging, horseshoe nails.

BAB I PENDAHULUAN

1. Latar belakang

Paku tapal kuda adalah sebuah logam berujung runcing biasanya terbuat dari material baja untuk melekatkan Sepatu kuda / ladam pada kuku kaki kuda agar ladam kuda tetap melekat dan tidak terlepas. Para konsumen lebih memilih membeli paku tapal kuda *import* daripada paku tapal kuda produk lokal. Paku tapal kuda lokal kalah bersaing dikarenakan proses manufaktur yang dilakukan menggunakan proses konvensional sehingga memiliki kualitas yang masih jauh dari standar paku tapal kuda import khususnya dari Australia dan Swedia [1].

Proses pembuatan paku tapal kuda lokal masih menggunakan alat-alat tradisional. Dimana prosesnya memakan waktu yang sangat panjang dan kualitasnya yang jauh dari standar paku tapal kuda *import*. Berikut adalah gambar tahapan proses pembuatan untuk paku kuda lokal.

Gambar 1. Tahapan proses pembuatan paku tapal kuda lokal [1].

Untuk meningkatkan kualitas paku tapal kuda dalam negeri yang sesuai standar kuda pacu, diperlukan pengetahuan untuk meningkatkan mutu serta kualitas produk yang dapat bersaing dengan produk *import*.

2. Rumusan masalah

Berdasarkan permasalahan latar belakang sebelumnya, penulis merumuskan pokok permasalahan dalam penelitian ini. Rumusan masalahnya sebagai berikut:

a. Bagaimana perancangan dan pembuatan *dies forging* pada operasi pembentukan paku tapal kuda?

b. Bagaimana proses pembentukan paku tapal kuda pada dies forging?

3. Tujuan

Berdasarkan masalah yang telah dirumuskan, penelitian ini bertujuan sebagai berikut:

- a. Merancang dan manufaktur dies forging pada tahapan proses paku tapal kuda.
- b. Menguji prototipe dies forging paku tapal kuda yang telah dibuat.

4. Manfaat

Untuk mengevaluasi kualitas penelitian yang dilakukan oleh peneliti, penting bahwa penelitian tersebut memberikan nilai tambah, baik dari segi teoritis maupun praktis. Dengan demikian, berikut adalah manfaat yang dapat ditemukan dalam penelitian ini.

a. Manfaat Teoritis

Dari hasil penelitian ini dapat menjadi acuan dan solusi permasalahan bagi pemilik kuda pacu untuk tidak membeli produk *import* paku tapal kuda.

b. Manfaat Praktis

Harapannya, penelitian ini dapat dijadikan solusi permasalahan bagi produsen paku tapal kuda dalam negeri, khususnya para pengrajin pandai besi di Tingkat domestik. Solusi tersebut diharapkan mampu meningkatkan mutu bentuk, ukuran, kehalusan permukaan, konsistensi bentuk dan standar ukuran agar dapat memenuhi standar yang diterima oleh segmen pasar lebih tinggi, khususnya untuk kuda pacu.

5. Lingkup masalah

Batasan masalah yang dilakukan dalam penelitian rancangan ini adalah:

- a) Merancang dan membuat prototipe dari *dies forging* pada operasi pembentukan paku tapal kuda tahapan 2.
- b) Untuk pembuktian dari fungsi kerja dies yang dirancang, pembuatan dies menggunakan material dies menggunakan Baja S45C dan material paku menggunakan hasil dari pengujian tahap 1 (*upsetting*) dimana berasal dari kawat timah (*lead wire*) dengan diameter awal 4 mm dan panjang 45 mm.

6. Sistematika penulisan

Skripsi ini disusun bab demi bab yang terdiri dari lima bab. Beberapa bab yang dibahas pada skripsi ini adalah pendahuluan, studi literatur, metode penelitian, analisi hasil pengujian dan pembahasan, kesimpulan dan saran, daftar pustaka, serta lampiran.

BAB I PENDAHULUAN

Memaparkan mengenai latar belakang, rumusan masalah, tujuan, manfaat, batasan masalah, dan sistematika penulisan.

BAB II STUDI LITERATUR

Memaparkan mengenai teori-teori paku kuda, proses upsetting, forging, dan trimming.

BAB III METODOLOGI

Memaparkan tahapan-tahapan penelitian yang didukung diagram alir serta penjelasan tentang metode pengujian dan metode pengolahan data atau analisis hasil pengujian, serta material yang digunakan.

BAB IV HASIL DAN PEMBAHASAN

Memaparkan tabel hasil dan pembahasan beserta perhitungan anggaran biaya yang digunakan untuk tugas akhir.

BAB V KESIMPULAN DAN SARAN

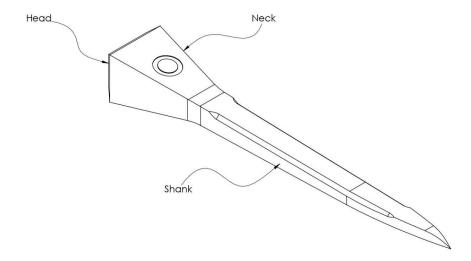
Memaparkan tentang kesimpulan serta saran keseluruhan dari penelitian ini.

DAFTAR PUSTAKA

Memaparkan buku acuan atau jurnal yang digunakan dalam pembuatan laporan tugas akhir.

LAMPIRAN

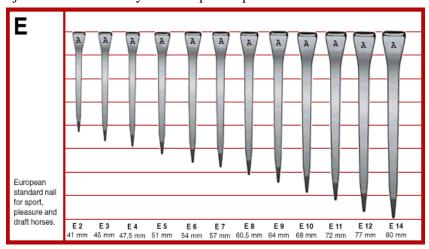
Memaparkan tentang dokumentasi pada proses pengerjaan tugas akhir.


BAB II STUDI LITERATUR

1. Paku Tapal Kuda

Paku tapal kuda adalah paku khusus yang digunakan untuk menempelkan ladam atau tapal kuda pada kaki kuda. Material yang digunakan terbuat dari baja karbon rendah. Paku tapal kuda merupakan komponen penting karena memberikan cengkraman, stabilitas, dan perlindungan pada kaki kuda.

Paku tapal kuda bisanya terbuat dari material yang kuat dan relatif tahan aus. Secara geometrik paku tapal kuda memiliki ujung yang runcing dan bengkok untuk menembus berbagai kuku kuda.


Paku tapal kuda memiliki bagian- bagian: badan (*shank*), leher (neck), dan kepala (head) seperti diperlihatkan pada Gambar 1. Bentuk dan ukuran paku ladam kuda dapat bervariasi dari E2-E14 Gambar 2.

Gambar 2. Paku tapal kuda [8].

Kepala paku tapal kuda harus cukup kecil sehingga dapat masuk dengan sempurna ke lubang yang dibuat pada tapal kuda, juga kepala paku tidak menonjol ke luar dari ladam. Apabila terjadi ketidaksesuaian antara kepala paku dan lubang pada tapal kuda, maka pada saat kuda melangkah akan terjadi gesekan yang besar dan dapat menarik paku lepas atau bengkok. Hal tersebut dapat melukai kuku kuda. Bagian leher pada paku tapal kuda harus mempunyai lebar yang tepat dan berbentuk baji sehingga mudah menembus kuku kuda. Bagian badan harus cukup panjang tetapi tidak sampai melukai bagian dalam dari kuku kuda dan apabila dipasang harus berbelok ke arah luar kuku.

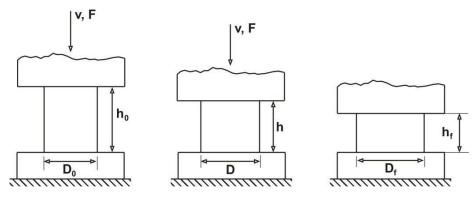
Jarak antara lubang paku bagian dalam dengan bagian luar tapal kuda bervariasi tergantung lebar *wall* dari kuku kuda yang akan dipasang tapal kuda. Ukuran paku tidak sama, paku pada bagian *toe* lebih besar daripada paku bagian *heels*. Faktor lain yang harus diperhatikan pada lubang paku pada tapal kuda adalah tebal tapal kuda. Apabila lubang paku terletak terlalu keluar maka akan menyebabkan ujung paku menembus dinding kuku (*wall*) tetapi jika lubang terlalu dalam maka akan melukai bagian dalam dari kuku kuda. Penempatan yang tepat disesuaikan dengan berat kuda dan tebal kuku kuda. Hal tersebutlah yang menjadi acuan dibentuknya standar paku tapal kuda.

Gambar 3. Standar paku tapal kuda [8].

2. Pengertian Tempa (Forging)

Forging atau penempaan didefinisikan sebagai proses pengerjaan logam di mana bentuk benda kerja diperoleh dalam keadaan padat dengan gaya tekan yang diberikan melalui penggunaan cetakan dan peralatan. Proses penempaan dilakukan dengan cara memukul atau menekan logam. Proses ini merupakan salah satu proses pengerjaan logam tertua yang sudah ada sejak ribuan tahun lalu. Secara tradisional, penempaan dilakukan oleh seorang pandai besi dengan menggunakan palu (hammer) dan landasan (anvil) [2].

Penempaan (*forging*) adalah proses pembentukan logam secara plastis dengan mempergunakan gaya tekan untuk mengubah bentuk atau ukuran dari logam yang di kerjakan. Proses penempaan ini dilakukan dengan 2 cara yaitu dengan pengerjaan panas (*Hot Working*) dan pengerjaan dingin (*Cold Working*) [3].


Berdasarkan kecepatan deformasi yang diterapkan pada benda kerja, mesin perkakas untuk melakukan *forging* dibedakan menjadi *forging hammer* (laju deformasi cepat) dan *forging press* (laju deformasi lambat). Berdasarkan tingkat kebebasan aliran material ketika

proses deformasi dilakukan, forging dapat dibedakan menjadi open dies forging, impression dies forging, dan flashless forging.

A. Open dies Forging

Pada *open dies forging*, benda kerja ditekan dengan menggunakan penekan yang mempunyai permukaan rata. Selama proses penekanan, material benda kerja bebas mengalir ke arah tegak lurus dengan penekanan. Jika *open dies forging* dilakukan pada kondisi yang ideal (tidak ada gesekan pada permukaan *dies* dengan permukaan benda kerja), maka deformasi material pada arah tegak lurus arah penekanan akan seragam di setiap posisi tertentu pada ketinggian benda kerja.

Regangan sebenarnya yang dialami oleh benda kerja selama penekanan adalah:

Gambar 4. Ideal Forging [9].

$$\epsilon = \ln(\frac{h_0}{h}) \tag{2.1) [4]}$$

Keterangan:

 ϵ : Regangan sebenarnya

 h_0 : Tinggi awal benda

h : Tinggi benda saat ditekan

Gaya yang untuk mendeformasi material pada saat proses open dies forging adalah:

$$F = \sigma. A \tag{2.2} [4]$$

Keterangan:

F : Gaya yang diperlukan untuk mendeformasi material

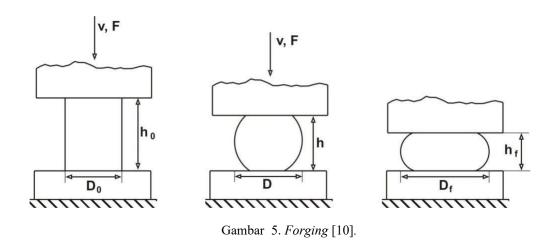
 σ : Tegangan sebenarnya

A : Luas penampang benda kerja

untuk mencari tegangan sebenarnya menggunakan persamaan berikut:

$$\sigma = K \,\varepsilon^n \tag{2.3} [4]$$

Keterangan:


 σ : Tegangan sebenarnya (MPa)

K: Koefisien kekuatan material (MPa)

 ε : Regangan sebenarnya

n : Eksponen pengerasan regangan

Ketika *die* bergesekan dengan permukaan benda yang ditekan, deformasi benda kerja pada setiap posisi pada ketinggian benda kerja berbeda-beda. Semakin jauh posisi benda kerja dari permukaan kontak dengan *die*, semakin besar deformasi pada bagian benda kerja tersebut.

Pada kondisi sebenarnya, gaya yang diperlukan untuk mendeformasi material dapat dicari dengan menggunakan persamaan:

$$F = K_f \sigma A \tag{2.4} [4]$$

Keterangan:

F : Gaya yang diperlukan untuk mendeformasi material

 K_f : Faktor bentuk

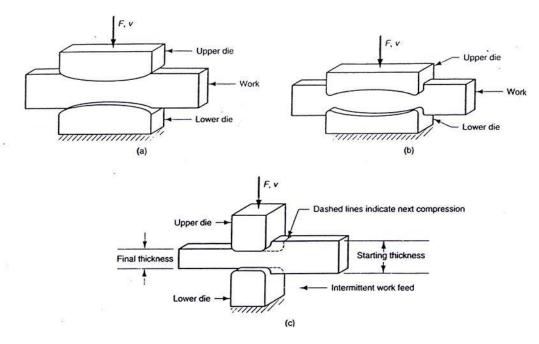
 σ : Tegangan sebenarnya

A : Luas penampang benda kerja

Faktor bentuk dicari dengan persamaan berikut:

$$K_f = 1 + \frac{0.4 \,\mu \,D}{h} \tag{2.5}$$

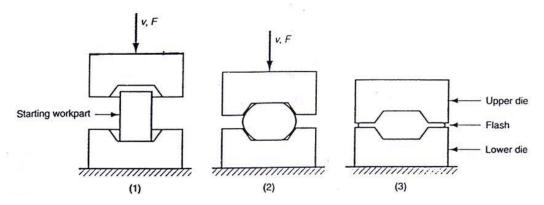
Ketarangan:


 K_f : Faktor bentuk

μ : Koefisien gesek antara *die* dengan permukaan benda

D : Diameter benda kerja saat benda kerja dideformasi

h : Tinggi benda saat ditekan


Beberapa operasi *open dies forging* yang sering dilakukan di industri meliputi *fullering*, *edging*, *and cogging*.

Gambar 6. Open Dies Forging [11].

B. Impression Die Forging

Pada *impression die forging*, material atau benda kerja ditekan dengan menggunakan penekanan yang permukaannya memiliki kantong yang membentuk cetakan. Dinding cetakan tersebut menjadi batas aliran material selama proses deformasi dilakukan. Pada proses ini, sejumlah kecil material masih dapat mengalir secara bebas kea rah tegak lurus dengan arah penekanan. *Impression die forging* dilakukan dengan cara menekan material dengan menggunakan pahat yang permukaannya memiliki cekungan (kantong) yang bentuknya menyesuaikan produk yang akan dibuat, biasanya merupakan bentuk negative produk yang akan dibuat.

Gambar 7. Impression die forging [12].

Aliran material semala proses pembentukan dilakukan cukup kompleks sehingga analisis gaya-gaya pembentukan juga menjadi kompleks. Secara umum gaya yang diperlukan untuk mendeformasi material pada *impression die forging* adalah:

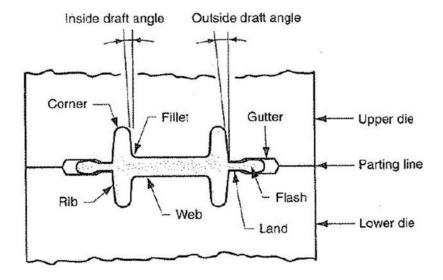
$$F = K_f \sigma A \tag{2.6} [4]$$

Keterangan:

F: Gaya yang diperlukan untuk mendeformasi material

 K_f : Faktor bentuk

 σ : Tegangan sebenarnya

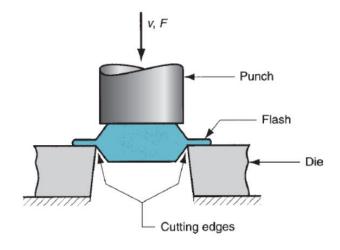

A: Luas penampang benda kerja

C. Flashless Forging

Pada flashless forging, benda kerja ditekan dengan menggunakan cetakan atau *die* yang membentuk ruangan tertutup. Selama proses penekanan, seluruh dinding cetakan menghalangi aliran material benda kerja sehingga tidak terbentuk *flash*.

3. Draft Angle

Draft angle merupakan sudut kemiringan pada dies. Draft angle perlu digunakan dalam membuat dies agar memudahkan benda kerja terlepas dari dies dengan mudah setelah benda kerja tersebut ditempa. Semakin besar sudut draft, semakin baik kemudahan pelepasan benda kerja. Sudut draft yang umum digunakan dalam industri manufaktur adalah 3,5,7, dan 10 derajat.



Gambar 8. Draft Angle [13]

4. Trimming

Trimming atau pemangkasan adalah pembuangan kelebihan logam yang tidak digunakan dari hasil proses manufaktur untuk mencapai tahap akhir atau persiapan material sebelum lanjut ke tahap berikutnya [5]. *Trimming* logam memiliki beberapa fungsi, diantaranya:

- Menghilangkan bagian material yang terdistorsi selama proses forging.
- Memotong bagian terluar dari part yang dilakukan proses forging untuk mendapatkan hasil yang diinginkan.
- Menjaga kepresisian dan mengurangi risiko cacat dari produksi.

Gambar 9. Trimming operation [13].

5. Pemilihan Material dan Proses

Pemilihan material merupakan proses yang penting untuk mengevaluasi karakteristik dari material, seperti kekuatan dan biaya produksi untuk membuat *dies* paku tapal kuda tersebut. Tujuannya adalah untuk memilih material yang sesuai untuk proses perancangan *dies* paku tapal kuda, dengan mempertimbangkan kinerja dan kebutuhan desain dies tersebut. Hal ini memungkinkan untuk menciptakan produk dengan kualitas terbaik dan biaya produksi yang efisien. Aspek- aspek yang harus diperhatikan dalam pemilihan material:

- Ketersediaan material di pasaran
- Harga material di pasaran
- Mengetahui sifat atau karakteristik material
- Mampu bentuk atau mampu proses dalam pembuatan

A. Material Dies Paku Tapal Kuda

Baja Perkakas

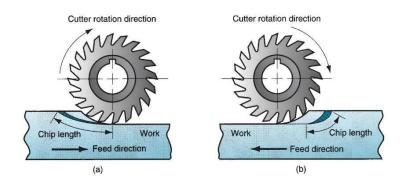
Tool steel atau baja perkakas adalah jenis baja yang dirancang khusus untuk digunakan pada material hand tool, seperti cutting, forming, shafing, dan blanking. Baja perkakas memiliki karakteristik seperti kekerasan yang tinggi, ketahanan terhadap aus, kekuatan yang baik, dan kemampuan mempertahankan kekerasan pada temperature tinggi.

Baja perkakas umumnya digunakan dalam industry manufaktur, termasuk pembuatan perkakas mesin, cetakan, dan bagian-bagian yang memerlukan ketahanan yang tinggi terhadap tekanan dan gesekan. Jenis baja perkakas yang digunakan untuk material dies dapat dilihat pada table 1.

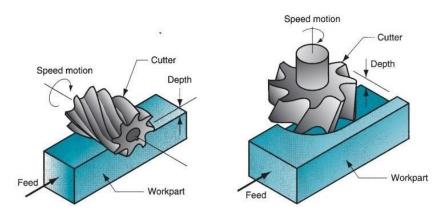
Material yang dipilih untuk pembuatan *dies* paku tapal kuda yaitu baja perkakas atau *tool steel* AISI D2. Baja perkakas seri D merupakan kelas baja perkakas yang sering digunakan dalam pembuatan *dies* atau perkakas yang membutuhkan ketahanan yang tinggi terhadap aus, kekerasan yang tinggi, dan kestabilan dimensi yang baik pada temperature kerja yang tinggi.

Table 1. Jenis baja perkakas untuk die[14].

Die materials I / Co	ld forging tool steel	s / Activi	compone	ints											
Material No.	DIN	ANSI	JIS	Com	positio	ın in %									
to DIN	Garmany	USA	Japan	C	Si	Mn	P	S	Co	Cr	Mo	Ni	٧	W	Ti
1.2363	X100CrMoV51	A2	SKD11	1.00	0.30	0.55	0.03	0.03	-	5.00	1.10	-	0.20	-	-
1.2369	81M0CrV4216			0.81	0.25	0.35	-	_	-	4.00	4.20	-	1.00	-	-
1.2379	X155CrVMo121	D2	SKD11	1.55	0.30	0.35	0.03	0.03	-	12	0.70	-	1.00	-	-
1.2709	X3NiCoMoTi1895			0.03	0.10	0.15	0.01	0.01	9.25	0.25	5.00	18	-	-	-
1.2713 1. NiCrMo	55NiCrNoV6	6F2	SKT4	0.55	0.30	0.60	0.03	0.03	-	0.70	0.30	1.70	0,10	-	-
1.2714	57NiCrNoV7		SKT4	0.58	0.30	0.70	0.03	0.03	-	1.00	0.50	1.70	0.10	-	*
1 2767	X45NiCrMo4	6F7		0.45	0.25	0.30	0.03	0.03	-	1.35	0.25	4.00	-	-	-
1.3207 HSS	S10-4-3-10	T42	SKH57												
1.3343	S-6-5-2	M2	SKH51	0.90	0.45	0.40	0.03	0.03	-	4.15	5.00	-	1.85	6.35	-
1 2244	C 4 10 2	11212		1.20	0.45	0.60	0.03	0.02		415	5.00		200	4.75	
1.3344	S-6-10-2	M3/2		1.20	0.45	0.40	0.03	0.03	-	4.15	5.00	-	3.00	6.35	-
	S-6-10-2 ol-warm forging tool		Active con	nponen	ts	0.40 on in %		0.03	-	4.15	5.00	-	3.00	6.35	-
Die materials I / Ho	ol-warm forging tool	steels /		nponen	ts			0.03 S	Co	4.15 Cr	5.00 Mo	Ni	3.00 V	6.35 W	Ti
Die materials I / Ho Material No.	ol-warm forging tool	steels /	JIS	nponen Com	ts positio	n in %			Co			Ni 1.70			
Die materials I / Ho Material No. Io DIN	ol-warm forging tool DIN Germany	ANSI USA	JIS Japan	rponen Com C	ts positio Si	n in %	P	S	Co	Cr	Mo		V		
Die materials I / Ho Material No. to DIN 1.2713 1. NiCrMo	DIN Germany 55/NiCrN10V6	ANSI USA	JIS Japan SKT4	Com C 0.55	ts position SI 0.30	n in % Mn 0.60	P 0.03	S 0.03	-	Cr 0.70	Mo 0.30	1.70	V 0.10		
Die materials I / Ho Material No. to DIN 1.2713 1. NiCrMo	DIN Germany 55NiCrNtoV6 57NiCrNtoV7	ANSI USA 6F2	JIS Japan SKT4 SKT4	Com C 0.55	position Si 0.30 0.30	on in % I/An 0.60 0.70	P 0.03 0.03	S 0.03 0.03	-	Cr 0.70 1.00	Mo 0.30 0.50	1.70	V 0.10 0.10		
Die materials I / Ho Malerial No. to DIN 1.2713 1. NiCrMo 1.2714 2. CrNiMo	DIN Germany SSNICrNOV6 S7NICrNOV7	ANSI USA 6F2	JIS Japan SKT4 SKT4 SKD6	Com C 0.55 0.58	ts position SI 0.30 0.30 1.00	0.60 0.70 0.40	P 0.03 0.03 0.03	S 0.03 0.03	-	Cr 0.70 1.00 5.30	Mo 0.30 0.50	1.70 1.70	V 0.10 0.10 0.40	W	TI -
Die materials I / Ho Malerial No. to DIN 1.2713 1. NiCrMo 1.2714 2. CrNiMol	DIN Germany SSNICrNtoV6 57NICrNtoV7 / X32CrNoV51 X40CrMoV51	ANSI USA 6F2 H11 H13	JIS Japan SKT4 SKT4 SKD6	Com C 0.55 0.58 0.38 0.40	position Si 0.30 0.30 1.00 1.00	IAn 0.60 0.70 0.40 0.40	P 0.03 0.03 0.03 0.03	S 0.03 0.03 0.03	-	Cr 0.70 1.00 5.30 5.30	Mo 0.30 0.50 1.10 1.40	1.70 1.70	V 0.10 0.10 0.40	W	TI -
Die materials I / Ho Material No. to DIN 1.2713 1. NiCrMo 1.2714 2. CrNiMo 1.2343 2. CrNiMo 1.2344	DIN Germany SSNICrN10V6 57NICrN10V7 / X32CrN/0V51 X432CrM/0V51	ANSI USA 6F2 H11 H13	JIS Japan SKT4 SKT4 SKD6 SKD61	Com C 0.55 0.58 0.38 0.40	Si 0.30 0.30 1.00 1.00 0.30	0.60 0.70 0.40 0.30	P 0.03 0.03 0.03 0.03 0.03	\$ 0.03 0.03 0.03 0.03 0.03	-	Cr 0.70 1.00 5.30 5.30	Mo 0.30 0.50 1.10 1.40	1.70 1.70	V 0.10 0.10 0.40	W	TI


B. Material Paku Tapal Kuda

Baja Karbon Rendah


Baja karbon rendah adalah paduan baja yang mengandung karbon kurang dari 0,3 % C [6]. baja karbon rendah merupakan baja yang paling mudah diproduksi diantara semua karbon, mudah di-*machining* dan dilas, serta keuletan dan ketangguhan yang sangat tinggi namun, memiliki kekerasan yang rendah. Sehingga baja karbon rendah sering digunakan sebagai material paku tapal kuda *import*.

C. Proses Manufaktur Pada Proses Perancangan Dies Paku Tapal Kuda

• Proses Milling

Gambar 10. Up Milling dan Down Milling [13]

Gambar 11. Slab Milling dan Face Milling [13]

Proses *milling* adalah salah satu teknik manufaktur yang menggunakan pisau berputar untuk menghilangkan material dari sebuah objek kerja secara bertahap. Proses ini dilakukan dengan mesin yang memiliki pisau pemotong yang dipasangkan pada *spindle* atau poros mesin dan dapat berputar dengan kecepatan tinggi. Dalam proses pemesinan *milling* waktu yang dibutuhkan untuk membuat komponen harus seminimal mungkin agar tercapai kapasitas produksi yang tinggi. Parameter proses pemotongan yang maksimum akan menghasilkan laju pemakanan material yang tinggi namun juga mengakibatkan kekerasan permukaan yang tinggi pula [7]. Proses *milling* sangat berguna dalam pembuatan alur, lubang, dan permukaan yang datar. Proses *milling* dapat dilakukan secara manual atau menggunakan mesin CNC (*Computer Numerical Control*) yang memungkinkan proses pemotongan yang lebih presisi dan efisien karena dikontrol oleh computer.

BAB III METODOLOGI

1. Tahapan Penelitian

Berikut adalah uraian keterangan tahapan penelitian;

Gambar 12. Diagram alir tahapan penelitian

• Identifikasi Masalah

Berdasarkan latar belakang yang telah diuraikan, identifikasi masalah dalam penelitian ini bagaimana rancangan desian *dies* paku tapal kuda, proses pembuatan paku tapal kuda, serta produk paku tapal kuda yang sesuai dengan standar kuda pacu.

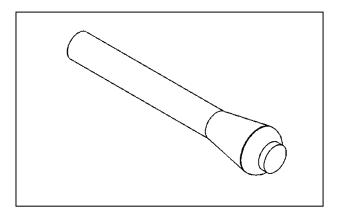
• Studi Literatur dan Pengumpulan Informasi

Studi literatur dan pengumpulan informasi dilakukan sebagai dasar acuan permasalahan yang akan diteliti dengan mencari informasi melalui beberapa buku pedoman yang berkaitan dengan penelitian, beberapa artikel baik internet maupaun jurnal, serta data penelitian dan paten yang sudah ada sebelumnya.

• Perancangan Tahapan Proses Pembentukan Paku Tapal Kuda

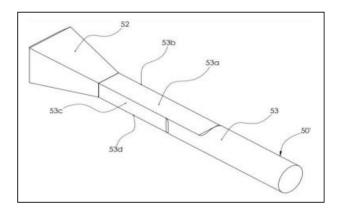
Tahapan ini merupakan tahapan penentuan dari tahapan pada proses pembuatan paku kuda. Dalam pembuatan paku kuda terdapat beberapa tahapan proses mulai dari proses *upsetting* sampai *labelling* yang nantinya akan mempengaruhi hasil akhir dari produk paku tapal kuda.

• Perancangan Desain Dies Trimming Paku Tapal Kuda

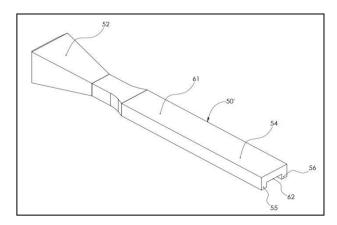

Perancangan desain *dies* paku tapal kuda dimaksudkan untuk membuat desain *dies* pada proses pembuatan paku kuda yang sesuai dengan tahapan proses pembentukan paku tapal kuda dari hasil studi literatur.

Dies merupakan sebuah alat yang digunakan dalam proses manufaktur atau industry untuk membentuk atau mencetak logam menjadi bentuk yang diinginkan. Pada perancangan ini desain dies terdiri dari dua bagian atas dan bagian bawah dies, yang saling berhubungan satu sama lain sehingga dapat menghasilkan produk yang diinginkan.

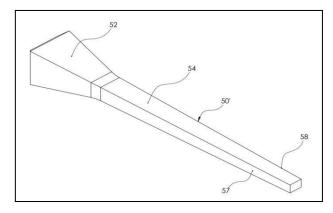
Berikut adalah konsep desain *dies* atau cetakanpaku tapal kuda yang akan dibuat pada proses pembuatan paku kuda yang ada di universitas pasundan.


Penjelasan proses pembuatan paku tapal kuda

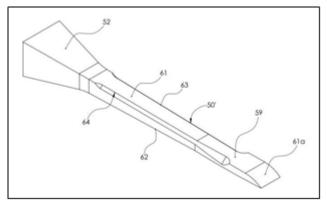
• Tahap pertama Upsetting


Gambar 13. Paku tahap pertama

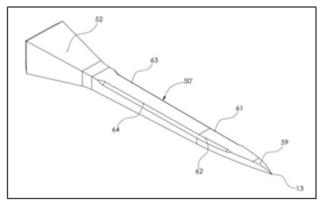
• Tahap dua proses Forging, Trimming


Gambar 14. Paku Tahap Dua

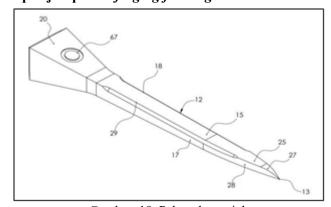
• Tahap tiga proses forging forming


Gambar 15. Paku tahap tiga

• Tahap empat proses trimming


Gambar 16. Paku tahap empat

• Tahap lima proses forging forming


Gambar 17. Paku tahap lima

• Tahap enam proses trimming

Gambar 18. Paku tahap enam

• Tahap tujuh proses forging forming

Gambar 19. Paku tahap tujuh

• Proses Pembuatan dan Pengujian Prototipe Dies Trimming

Proses pengujian *dies* dilakukan untuk mengecek hasil pembentukan paku kuda dari *dies* yang telah dibuat.

• Pembuatan Laporan

Pada tahap ini dilakukannya penulisan laporan dari hasil penelitian yang sudah dilakukan mengenai perancangan *dies* paku tapal kuda di Universitas Pasundan.

2. Jadwal kegiatan

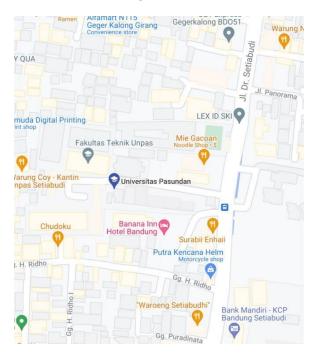

Rencana kegiatan dirancang sebagai acuan dalam penyelesaian Skripsi, agar pengerjaannya dapat dilakukan secara akurat dan terukur sehingga tidak ada banyak waktu yang terbuang, dan agar diharapkan memiliki hasil yang sesuai dengan target yang diinginkan.

Table 2. Jadwal kegiatan

No	W		Ol	ctob	er		Nov	eml	oer		Des	emb	oer		Ja	ınua	ri
NO	Kegiatan	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Studi Lieteratur dan Pengumpulan informasi																
2	Penyusunan Proposal																
3	Perancangan Desain Dies																
4	Pemilihan Material Proses																
5	Seminar Usulan Penelitian																
6	Pembelian Alat dan Material																
7	Proses Pembuatan Prototipe Dies																
8	Pembuatan Laporan																
9	Seminar Skripsi																
10	Sidang Skripsi																

3. Tempat Penelitian

Penelitian ini dilakukan di Laboratorium Teknik Mesin FT UNPAS Jl. Setiabudhi No. 193, Gegerkalong, Kec Sukasari, Kota Bandung, Jawa Barat 40153.

Gambar 20. Tempat kegiatan

4. Peralatan dan Material yang Digunakan

Pada proses pembuatan *dies* paku tapal kuda terdapat peralatan dan material yang akan digunakan dapat dilihat pada table dibawah ini.

Table 3. Peralatan dan material yang digunakan.

No	Peralatan dan Material	Jumlah	Satuan
1	Mesin Milling CNC	1	Set
2	Mesin Drill	1	Set
3	Mistar	1	Pcs
4	Jangka Sorong	1	Pcs
5	Pemotong Kawat	1	Pcs
6	Baut M8	8	Pcs
7	Baja S45C	2,5	kg
8	Kawat Timah (diameter 4,1 mm)	5	Kg

BAB IV HASIL DAN PEMBAHASAN

1. Penjelasan Forging Tahap 2

Pada proses tahap ke 2 pembentukan paku tapal kuda dimungkinkan tidak memakai proses trimming. Dikarenakan pada tahapan tersebut volume rongga cetak hasil tahapan pertama (upsetting) dan volume rongga cetak pada tahapan ke dua (Forging) memiliki selisih yang sangat kecil. Cara menghitung volume rongga cetak menggunakan bantuan aplikasi CAD dengan membandingkan selisih inisiasi volume bentuk awal (tanpa rongga cetak) dengan volume setelah ada rongga cetak. Berikut adalah perbandingan volume dan rasio pemampatan volume pada tahap 2.

2. Hasil Perhitungan Volume

• Volume rongga cetak *dies* atas

$$v_{rongga\ cetak\ dies\ atas} = 91309,23\ mm^3 - 91025,25\ mm^3$$

 $v_{rongga\ cetak\ dies\ atas} = 283,98\ mm^3$

Volume rongga cetak dies bawah

$$v_{rongga\ cetak\ dies\ bawah} = 91309,32\ mm^3 - 91016,39\ mm^3$$

 $v_{rongga\ cetak\ dies\ bawah} = 292,93\ mm^3$

• Volume rongga cetak tahap 2

$$v_{rongga\ cetak\ dies\ atas} + v_{rongga\ cetak\ dies\ bawah} = 283,98\ mm^3 + 292,93\ mm^3$$

$$= 576,91\ mm^3$$

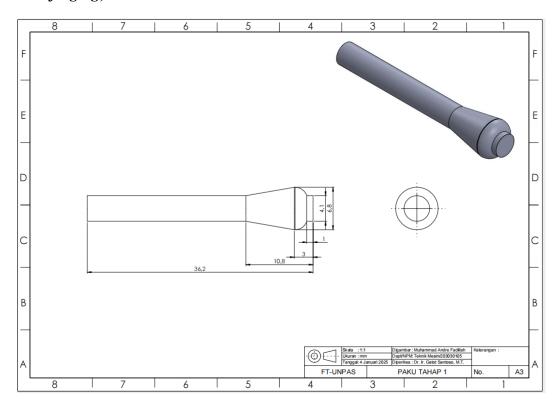
• Rasio pemampatan volume tahap 2

$$rasio\ pemampatan\ volume = \frac{v_{awal} - v_{akhir}}{v_{awal}}\ x\ 100\% \tag{4.1}$$

$$rasio\ pemampatan\ volume = \frac{579.17\ mm^3 - 576.91\ mm^3}{579.17\ mm^3}\ x\ 100\% = 0,3902\ \%$$

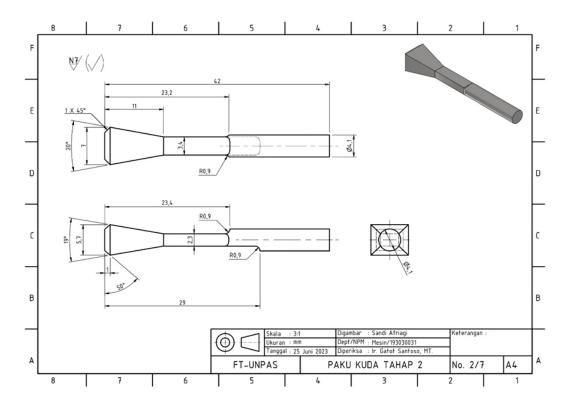
• Perbandingan volume

Volume tahap 1 : Volume tahap 2


 $579.17 \ mm^3 : 576.91 \ mm^3$

1:0.996

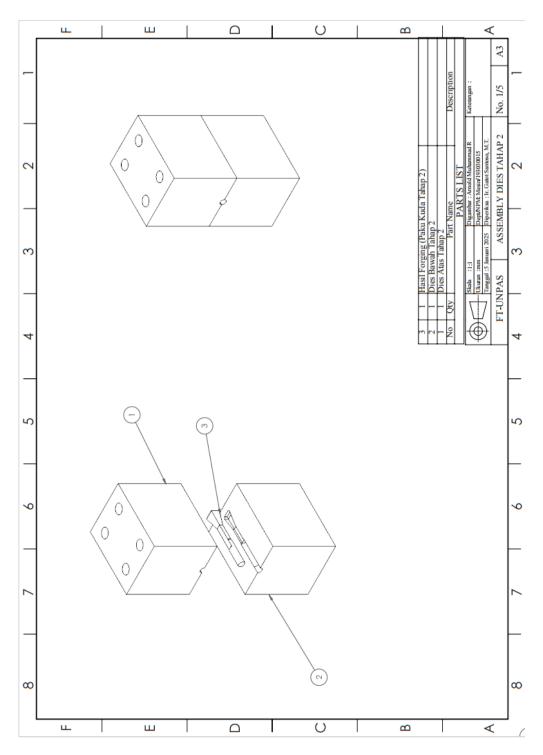
Karena memiliki perbandingan yang kecil hampir mendekati volume tahap 1 maka, dianggap pada proses tersebut tidak terjadinya pembentukan *flash*.


Pada tahap 2 proses pembentukan paku tapal kuda, membutuhkan benda kerja hasil proses tahap pertama (*Upsetting*) berikut adalah gambar teknik dari dari hasil tahap pertama (gambar berasal dari skripsi Muhammad Andre Fadillah).

3. Gambar teknik Paku Tapal Kuda Tahap 1 (*upsetting*) dan Tahap 2 (*forging*)

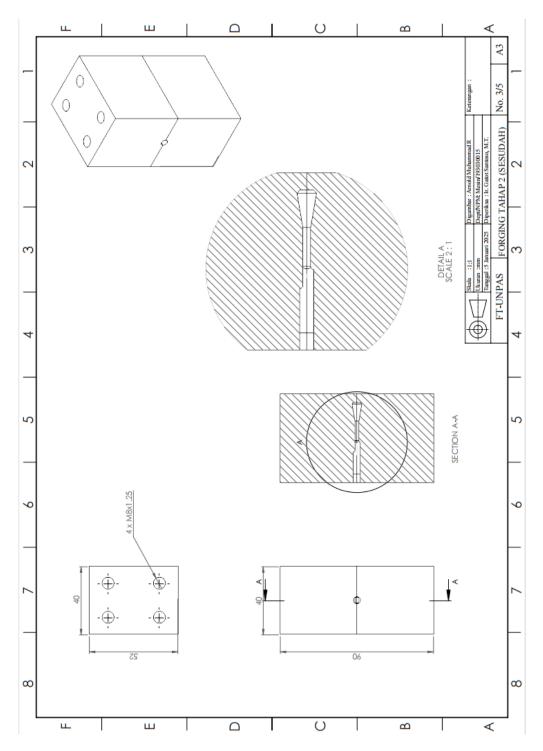
Gambar 21. Paku Kuda Tahap 1.

Pada tahap 1, memiliki bentuk kepala bulat pepat akibat proses tumbukan proses upsetting. Dimana panjang benda kerja 36,2 mm, diameter badan 4,1 mm, diameter kepala 6,8 mm. Pada daerah badan tidak ada perubahan, tetap berbentuk silinder.

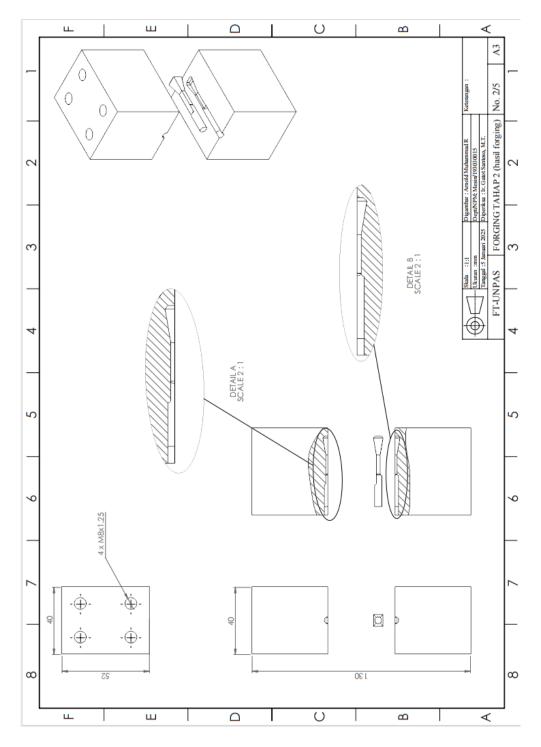

Gambar 22. Paku Kuda Tahap 2

Dapat dilihat dari pembentukan tahap 2, paku mengalami perubahan dimana bagian kepala menjadi berbentuk pentagonal dengan tebal paling tinggi yaitu 5,7 mm. Pada daerah badan mengalami perubahan menjadi bentuk balok dengan tebal 2,3 mm. Panjang benda kerja tahap ini menjadi 42 mm.

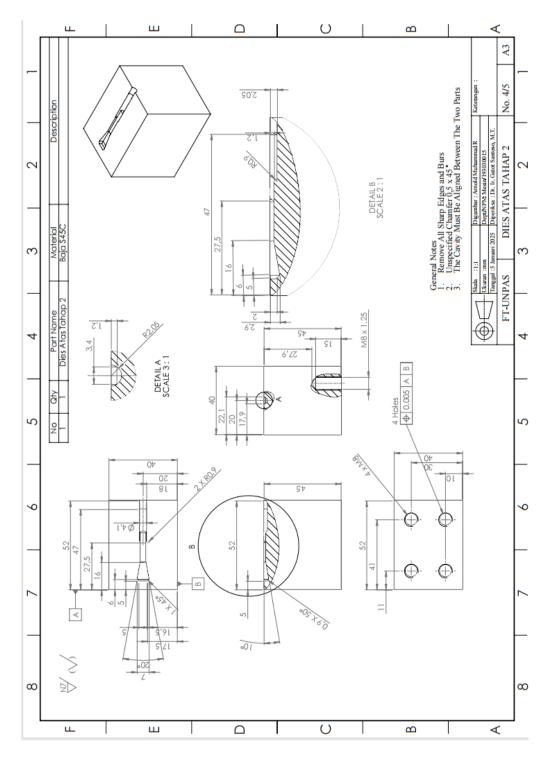
Pada pembentukan tahap 2, membutuhkan ruang kerja sebesar 40 x 52 x 130 mm, saat sebelum ditempa, dan saat ditempa ruang kerja menjadi 40 x 52 x 90 mm. maka langkah kerja yang dibutuhkan dies tahap 2 untuk menempa yaitu sebesar 40 mm (2,4 mm untuk proses penempaan dan 37,6 mm untuk tahap pengambilan hasil penempaan).


4. Gambar Teknik Dies

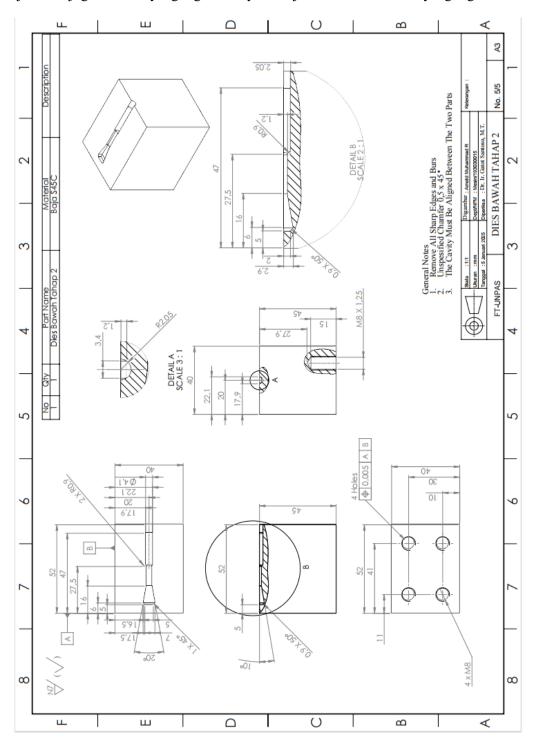
Gambar dibawah ini menunjukan *assembly* dari pengerjaan *forging* pada tahap 2. Gambar dibawah menjelaskan komponen-komponen dan hasil dari proses pengerjaan *forging* pada tahap 2. *Dies* atas ditunjukan dengan nomor satu (1). *Dies* bawah ditunjukan dengan nomor dua (2). Hasil produk atau hasil *forging* ditunjukan dengan nomor tiga (3).


Gambar 23. Assembly Dies Tahap 2

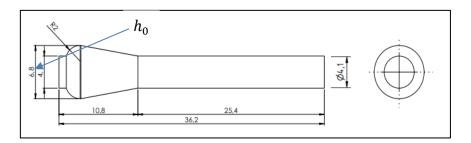
Gambar dibawah ini merupakan gambar ketika kedua komponen *dies* melakukan penempaan. Dimana diperlihatkan kedua rongga cetak harus bertemu sejajar agar tidak menimbulkan kecacatan pada produk yang akan dibuat. Pada daerah ujung paku dilakukan pembebasan guna mengatur aliran material dan pengambilan hasil produk saat proses penempaan.


Gambar 24. Assembly Forging Tahap 2 (Sesudah)

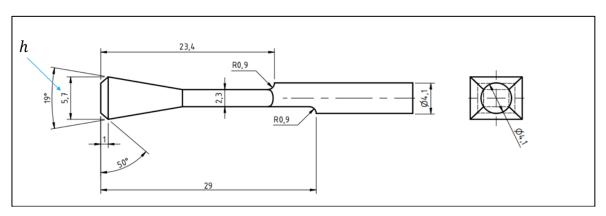
Gambar berikut merupakan gambar setelah *forging* dilakukan. Dimana masing-masing komponen *dies* memiliki rongga cetak (*cavity*). Rongga cetak tersebut lebih memfokuskan proses pembentukan (*forming*) pada daerah kepala dan badan paku. Pada ujung paku tidak ada proses pembentukan. Maka dari itu, ujung paku pada cetakan dibebaskan.


Gambar 25. Forging Tahap 2 (Hasil forging)

Gambar dibawah ini, menunjukan gambar teknik pada *dies* atas tahap 2. Daerah rongga cetak (*cavity*) ditentukan sesuai ukuran paku pada proses tahapan ke-2. Gambar memuat berbagai detail-detail dan ukuran yang dibutuhkan untuk pembuatan *dies*. Dijelaskan juga material yang digunakan yaitu baja S45C dan toleransi yang digunakan.


Gambar 26. Dies Atas Tahap 2

Gambar dibawah ini, menunjukan gambar teknik pada *dies* atas tahap 2. Daerah rongga cetak (*cavity*) ditentukan sesuai ukuran paku pada proses tahapan ke-2. Gambar memuat berbagai detail-detail dan ukuran yang dibutuhkan untuk pembuatan *dies*. Dijelaskan juga material yang digunakan yaitu baja S45C dan toleransi yang digunakan.



Gambar 27. Dies Bawah Tahap 2

5. Perhitungan Gaya Forging Tahap 2

Gambar 28. Sketsa paku pada tahap 1 (upsetting)

Gambar 29. Sketsa paku pada tahap 2 (forging)

• Perhitungan bagian kepala paku

• Regangan sebenarnya

Diketahui:

$$h_0 = d_0 = 6.8 \ mm$$

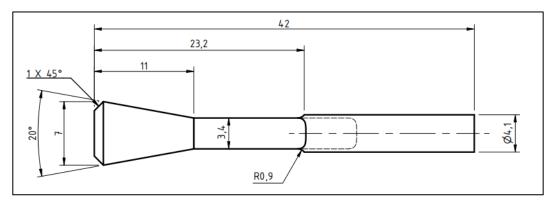
h = 5.7 mm

$$\varepsilon = \ln\left(\frac{h_0}{h}\right) = \ln\frac{6.8}{5.7} = 0.176$$

 $h_0=d_0$ dikarenakan pada hasil tahap $\mathit{upsetting}$ penampang berbentuk lingkaran.

Table 4. Tensile properties of Lead- Free solders [15].

A.C.	Chemical Elastic Modulus			Yield Strength (0.2 % offset)		Tensile Strength		Relative Elongation (%)		Strength Coefficient		Hard- ening Expo-
	% by Mass	(ksi)	GPa	(psi)	MPa	(psi)	MPa	Uni- form	Total	(psi)	MPa	ne nt
A1	Sn-37Pb	2,273	15.7	3,950	27.2	4,442	30.6	3	48	4,917	33.9	0.033
A2	Sn-2Ag-36Pb	2,617	18.0	6,287	43.3	6,904	47.6	1	31	7,223	49.8	0.011
A3	Sn-97Pb	2,753	19.0	1,126	7.8	2,383	16.4	27	38	3,934	27.1	0.235
A4	Sn-3.5Ag	3,793	26.2	3,256	22.5	3,873	26.7	3	24	4,226	29.1	0.026
A5	Sn-5Sb	6,460	44.5	3,720	25.7	5,110	35.2	3	22	4,177	28.8	0.031
A6	Sn-58Bi	1.720	11.9	7.119	49.1	8.766	60.4	3	46	9.829	67.8	0.029
A7	Sn-3.5 Ag- 0.5Sb-1Cd	1,,,20		7,545	52.0	0,700			15	,,,,,	0,,0	0.025
A8	Sn-75Pb			3,426	23.6				53			
Di	C COD:			0.262	57.0	0.065	61.0					
B1	Sn-50Bi			8,263	57.0	8,965	61,8		53			
B2	Sn-52Bi			6,414	44.2	8,834	60.9		57			
B5	Sn-2Ag-46Bi- 4Cu			9,806	67.6	10,070	69.4		3			
B6	Sn-56Bi-2In			7,224	49.8	8,429	58.1		116			
C1	Sn-2Ag-1.5Sb- 29Pb			6,489	44.7	6,865	47.3		25			
C2	Sn-3Ag-4Cu			6,276	43.3	7,006	48.3		22			
C3	Sn-2.5Ag-2Bi- 1.5Sb			7,070	48.7	8,117	56.0		21			
C4	Sn-3Ag-1Bi- 1Cu-1.5Sb			8,361	57.6	9,256	63.8		21			
C5	Sn-2Ag-9.8Bi- 9.8In			14,560	100.4	15,380	106.0		7			
	2.0111											
D2	Sn-57Bi-2In			7.304	50.4	8,436	58.2		72			
D3	Sn-2Ag-57Bi			9,487	65.4	10,390	71.6		31			
D4	Sn-57Bi-2Sb			8,521	58.8	9,586	66.1		47			
D5	Sn-57Bi-1Sb			8,285	57.1	8,944	61.7		60			
D6	Sn-2Ag-56Bi-			9,063	62.5	9,946	68.6		27			
200	1.5Sb			,,,,,,,	02.5	,,,,,,	00.0					
D7	Sn-3Ag- 55.5Bi-1.5Sb			8,665	59.7	9,379	64.7		45			
D8	Sn-3Ag-55Bi- 2Sb			8,984	61.9	9,807	67.6		44			
D9	Sn-3Ag-54Bi- 2In-2Sb			5,055	34.9	11,640	80.3		13			
D10	Sn-3Ag-54Bi- 2Cu-2Sb			11,440	78.9	12,280	84.7		4			


• Tegangan sebenarnya

Diketahui:

K = 27,1 MPa (*Stress Coefficient* material Pb)

n = 0,1 (eksponen pengerasan regangan untuk material [4])

$$\sigma = K. \in \mathbb{N} = 27.1 \times 0.176^{0.1} = 22.78 MPa$$

Gambar 30. Sketsa pandangan atas untuk menghitung luas proyeksi paku tapal kuda tahap 2 (forging).

• Gaya forging

Diketahui:

 $A = 60,62 \text{ } mm^2 \text{ (diperoleh dari aplikasi } SOLIDWORKS)$

$$F = K_f \cdot \sigma \cdot A = 1 \times 22,78 \text{ MPa} \times 60,62 \text{ mm}^2 = 1386,37 \text{ N} = 1,38 \text{ kN}$$

Pada gaya forging, Nilai A adalah Luas proyeksi bagian kepala pada Gambar 30. Konstanta K_f adalah 1 dikarenakan bentuk geometri rongga cetak dan material benda kerja bersifat lunak.

• Perhitungan bagian badan paku

• Regangan sebenarnya

Diketahui:

$$h_0 = d_0 = 4.1 \, mm$$

$$h = 2.3 \, mm$$

$$\varepsilon = \ln\left(\frac{h_0}{h}\right) = \ln\frac{4.1}{2.3} = 0.57$$

 $h_0 = d_0$ dikarenakan pada hasil tahap *upsetting* penampang berbentuk lingkaran.

Tegangan sebenarnya

Diketahui:

K = 27,1 MPa (Stress Coefficient material Pb)

n = 0,1 (eksponen pengerasan regangan untuk material [4])

$$\sigma = K. \in \mathbb{N} = 27.1 \times 0.57^{0.1} = 25.62 MPa$$

Gaya forging

Diketahui:

 $A = 58,12 \text{ } mm^2 \text{ (diperoleh dari aplikasi } SOLIDWORKS)$

$$F = K_f \cdot \sigma \cdot A = 1 \times 25,62 \text{ MPa} \times 58,12 \text{ mm}^2 = 1489,03 \text{ N} = 1,48 \text{ kN}$$

Pada gaya forging, Nilai A adalah Luas proyeksi bagian badan pada Gambar 30. Konstanta K_f adalah 1 dikarenakan bentuk geometri rongga cetak dan material benda kerja bersifat lunak

• Gaya total

$$F_{total} = F_{kepala} + F_{badan} = 1386,37 N + 1489,03 N = 2.875,4 N = 2,875 kN$$

• Energi penempaan bagian kepala

$$E = \frac{\sigma_1 + \sigma_0}{2} \Delta \varepsilon \tag{4.2}$$

Keterangan:

 σ_1 = nilai tegangan sebenarnya setelah penempaan (MPa)

 σ_0 = nilai tegangan sebenarnya sebelum penempaan (MPa)

 $\Delta \varepsilon$ = selisih nilai regangan sebenarnya

Diketahui:

$$\sigma_1 = 22,78 MPa$$

$$\sigma_0 = MPa$$

$$\Delta \varepsilon = 6.8 \ mm - 5.7 \ mm = 1.1 \ mm$$

$$E = \frac{22,78 + 27,69}{2}$$
 1,1 = 27,75 joule

• Energi penempaan bagian badan

Diketahui:

$$\sigma_1 = 25,62 MPa$$

$$\sigma_0 = 0 MPa$$

$$\Delta \varepsilon = 4.1 \, mm - 2.3 \, mm = 1.8 \, mm$$

$$E = \frac{25,62+0}{2}$$
 1,8 = 23,05 joule

• Energi total

$$E_{total} = E_{kepala} + E_{badan} = 27,75 joule + 23,05 joule = 50,8 joule$$

6. Rincian Anggaran

Rincian anggaran biaya merupakan biaya yang harus dipersiapkan untuk proses pembuatan paku tapal kuda beserta *dies* paku tapal kuda. Anggaran adalah sebagai berikut.

Table 5. Rincian Anggaran Biaya

No	Peralatan dan Material	Jumlah	Satuan	Harga Satuan (Rp)	Harga Total (Rp)
1	Jasa Proses Machining	1	Set	700.000	700.000
2	Baja S45C	2,5	kg	45.000	112.500
				Total (Rp)	812.500

7. Pembuatan Prototipe Dies

Pada tahapan ini penulis melakukan proses pembuatan prototipe *dies* paku tapal kuda dari hasil peracangan *dies* yang telah dilakukan. Berikut ini adalah proses pembuatan prototipe *dies* paku tapal kuda, yaitu:

A. Pemotongan Baja Karbon menengah S45C

Pada tahap ini proses pemotongan material sesuai dengan dimensi yang telah dirancang. Gambar dibawah merupakan material mentah untuk proses machining *dies* paku tapal kuda tahap 2. Material yang digunakan yaitu baja karbon menengah S45C. Ukuran material mentah yang dibutuhkan harus dilebihkan 5-8 mm sesuai kebutuhan pada proses *CNC milling*.

Gambar 31. Material Mentah Baja S45C

Melebihkan ukuran atau dimensi perlukan untuk mencapai dimensi akhir yang diinginkan dan juga memastikan hasil akhir yang presisi sesuai dengan spesifikasi desain. Jika material mentah memiliki dimensi yang terlalu pas dapat menyebabkan hasil pemesinan tidak presisi dan tidak sesuai spesifikasi desain.

Gambar dibawah ini memperlihatkan proses pemotongan material mentah sesuai dimensi material awal yang dibutuhkan untuk proses *CNC milling*. Pemotongan menggunakan alat *bench saw machine*.

Gambar 32. Pemotongan Baja S45C

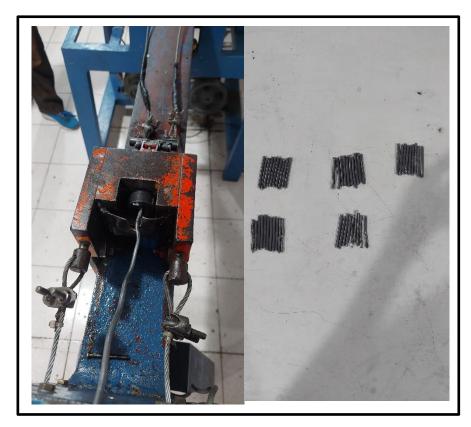
Gambar dibawah merupakan hasil pemotongan dari *bench saw machine*. Hasil pemotongan inilah yang menjadi material awal untuk proses pembuatan prototipe *dies* tahap 2 paku tapal kuda. Proses pemesinan yang digunakan yaitu *CNC Milling*.

Gambar 33. Hasil pemotongan Material Awal Pemesinan

B. Proses Pembuatan Dies

Pada tahap ini dilakukan pembuatan *dies forging* tahap 2 menggunakan mesin milling CNC sesuai dengan bentuk dan ukuran yang telah dirancang. *Dies* bawah memiliki bentuk yang serupa dengan *dies* atas hanya saja *cavity* menyesuaikan bentuk paku tapal kuda yang sudah dirancang.

Gambar 35. Proses Manufaktur Dies Tahap 2


Gambar 34. Hasil Dari Proses pemesinan

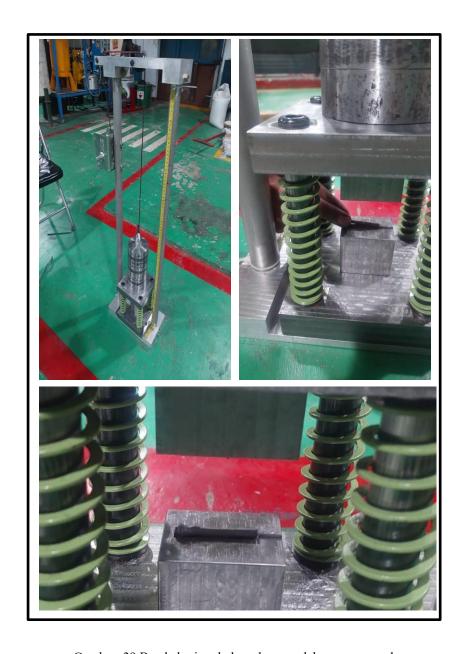
8. Pengujian Dies Paku Tapal Kuda

Pengujian paku tapal kuda dilakukan untuk mengetahui apakah *dies* tersebut berhasil membentuk kawat timah sesuai dengan bentuk tahapan proses hasil desain yang telah dibuat atau sebaliknya. Tingkat keberhasilan dapat dilihat dari ketelitian bentuk dan geometri dari hasil penempaan. Banyaknya penempaan dilihat dari hasil terbaik dari tahap sebelumnya dimana jumlah benda kerja sebanyak 175 buah. Maka dilakukan 175 kali penempaan. Berikut ini tahapan pengujian *dies* proses *forging* dan *forming* pada proses pembuatan paku tapal kuda:

A. Wire Drawing dan Pemotongan Kawat Timah

Pada tahap ini kawat timah berdiameter 4,1 mm dipotong menggunakan pemotong kawat dengan panjang 45 mm kemudian setiap tahapan melakukan 200 kali penempaan. *Wire Drawing* dilakukan untuk memenuhi diameter kawat yang dibutuhkan. Diameter awal kawat timah sebelum *wire drawing* yaitu 4,3 mm. Proses yang dilakukan pertama kali yaitu *upsetting* berfokus pada pembentukan kepala pada tahapan proses penempaan paku tapal kuda. Hasil dari proses tersebutlah yang menjadi benda kerja pada proses tahap 2 (*forging*). Berikut adalah gambar proses *wire drawing* dan pemotongan kawat timah.

Gambar 36. Proses wire drawing dan Pemotongan kawat


Gambar 37. Benda kerja tahap 2 pada proses pembentukan paku tapal kuda (hasil tahap *upsetting*).

B. Pengujian Dies Forging

Pada tahap ini, benda kerja diletakan pada rongga cetakan pada *dies forging* yang telah dirancang. Proses penempaan dilakukan dengan mesin *drop hammer* yang dirancang oleh Farid Budi Nurjafar. Setelah proses penempaan selesai sisa – sisa *flash* dihilangkan dan dilakukan analisis dari hasil penempaan. Pada pengujian benda kerja berupa hasil terbaik dari tahapan *upsetting* tahap 1 yang dirancang oleh skripsi Andre fadillah sebanyak 175 buah. Berikut adalah gambar prosesnya:

Gambar 38. Penempaan menggunakan Drop Hammer

Gambar 39.Benda kerja sebelum dan sesudah penempaan dan saat proses pengambilan

Pengujian yang dilakukan pada tahap 2 proses pembuatan paku tapal kuda membutuhkan gaya sebesar 3898,34 N (Perhitungan) dan langkah kerja yang dibutuhkan sebesar 40 mm. Pada kenyataannya di lapangan penempaan yang dilakukan dengan alat *drop hammer* mengunakan beban sebesar 10 kg pada ketinggian 45 cm dan 30 cm sebanyak 2 kali penjatuhan beban (*hammer*). Langkah kerja yang diperoleh di lapangan sebesar 47,91 mm. Berikut adalah hasil dari penempaan tahap 2 proses pembentukan paku tapal kuda..

Gambar 40. Hasil penempaan tahap 2 pada proses pembentukan paku tapal kuda. (terdapat *Flash*)

C. Hasil analisa setelah pengujian

Dari hasil penelitian, terdapat 4 kriteria nilai hasil proses penempaan (*forging*). Nilai tersebut dilihat dari kriteria desain dan geometri khususnya pada pembentukan kepala dan badan. Berikut adalah tabel kriterianya.

Table 6. Kriteria nilai hasil proses penempaan

Nilai	Kriteria	Jumlah	Presentase
1	Hasil penempaan sesuai dengan desain cetakan yang diharapkan dan panjang paku 42 mm.	155	88,57 %
0,75	Panjang dari paku mendekati 42 mm, terdapat ketidak sesuaian sekitar seperempat dari bentuk cetakan khususnya pada bagian kepala dan badan.	16	9,14 %
0,50	Panjang dari paku mendekati 42 mm, terdapat ketidak sesuaian sekitar setengah dari bentuk cetakan khususnya pada bagian kepala dan badan.		0 %

0,25	Hasil penempaan tidak sesuai dengan rongga cetak.	4	2,29 %

Pada kriteria nilai 0,25 kegagalan penempaan terjadi karena beberapa faktor yaitu diantaranya:

- a) Penempatan benda kerja tidak pas dengan rongga cetak.
- b) Terdapat ketidaksejajaran (*missalignment*) yang disebabkan oleh longgarnya baut pengikat *dies* dengan rangka *dies* dan ketidak sesuaian pada saat *setting* atau penempatan *dies*.
- c) Benda kerja awal yang tidak memenuhi desain dan geometri. Sehingga aliran material tidak memeuhi rongga cetak pada *dies*.
- d) Adanya hentakan dari hammer yang menyebabkan benda kerja terpental.

Berikut adalah gambar dari setiap kriteria nilai hasil penempaan.

Gambar 41. hasil penempaan dengan kriteria nilai 1.

Gambar 42. hasil penempaan dengan kriteria nilai 0,75.

Gambar 43. Hasil penempaan dengan kriteria nilai 0,25.

BAB V KESIMPULAN DAN SARAN

1. Kesimpulan

Perhitungan gaya yang dibutuhkan untuk proses penempaan menggunakan *dies forging* tahap ke 2 paku kuda adalah sebesar 2,875 kN. Pengujian penempaan dengan dies forging tahap 2 ini dilakukan sebanyak 175 kali. Proses penempaan menggunakan alat drop hammer dengan beban hammer sebesar 10 kg dan ketinggian 45 cm dan 30 cm Rata-rata panjang benda kerja awal sebesar 36,2 mm, dan rata-rata panjang benda kerja hasil penempaan menggunakan dies forging tahap ke 2 adalah sebesar 42 mm. Dari 175 kali penempaan, sebanyak 155 benda kerja terbentuk dengan sempurna sesuai dengan bentuk dan geometri yang diharapkan. Persentase tingkat keberhasilan hasil *forging* pada proses penempaan menggunakan *dies forging* tahap ke 2 paku tapal kuda sebesar 88,57 %.

2. Saran

- a. Ketelitian bentuk geometri produk hasil penemaan sangat bergantung pada geometri dari *dies forging* nya. Supaya rongga cetak dari *dies forging* lebih teliti dan akurat maka dibutuhkan mesin pemesinan yang memiliki tingkat ketelitian lebih tinggi seperti EDM (*electrical discharge machining*).
- b. Desain dan pengujian memiliki hasil yang sesuai dengan keinginan, maka penelitian dapat dilanjutkan dengan pembuatan dies forging yang menggunakan material baja perkakas AISI D2 serta material benda kerja menggunakan baja karbon rendah.

DAFTAR PUSTAKA

- [1] M. S. Permana, G. Santoso, B. Heru, and F. Ridwan, "Pengaruh Derajat Deformasi Terhadap Evolusi Struktur Mikro Dan Nilai Kekerasan Ladam Dan Paku Kuda Akibat Proses Forging," 2019.
- [2] M. G. Rathi and N. A. Jakhade, "An Overview of Forging Processes with Their Defects," *International Journal of Scientific and Research Publications*, vol. 4, no. 6, 2014, [Online]. Available: www.ijsrp.org
- [3] A. Antonnius, A. Afdal, M. Mukhnizar, R. Abu, and A. Azman, "Perencanaan Mesin Tempa Logam Dengan Sistem Forging Hammer," *Jurnal Teknik, Komputer, Agroteknologi Dan Sains*, vol. 1, no. 2, pp. 163–174, Nov. 2022, doi: 10.56248/marostek.v1i2.29.
- [4] D. William and J. Callister, Fundamentals of Materials Science and Engineering
 An Integrated Approach (5th- edition). 2015.
- [5] M. Hawryluk, P. Kondracki, J. Krawczyk, M. Rychlik, and J. Ziemba, "Analysis of the impact of forging and trimming tools wear on the dimension-shape precision of forgings obtained in the process of manufacturing components for the automotive industry," *Eksploatacja i Niezawodnosc*, vol. 21, no. 3, pp. 476–484, 2019, doi: 10.17531/ein.2019.3.14.
- [6] C. Michael Allen Adjelian Allen Rubeli Ltd et al., ASM Handbook VOL 1, Properties and Selection: Irons Steels and High Performance Alloys.
- [7] T. Jaya Suteja, S. Candra, and Y. Aquarista, "Optimasi Proses Pemesinan Milling Fitur Pocket Material Baja Karbon Rendah Menggunakan Response Surface Methodology."
- [8] M. S. Permana, G. Santoso, and B. Heru, "Pengembangan Metode Proses Manufaktur dan Pemilihan Material Ladam & Paku Untuk Kuda Pacu dan Ketangkasan Berkuda."
- [9] M. Chandrasekaran, "Forging of metals and alloys for biomedical applications," in *Metals for Biomedical Devices*, Elsevier Ltd, 2010, pp. 235–250. doi: 10.1533/9781845699246.3.235.
- [10] S. Kalpakjian and S. R. . Schmid, *Manufacturing engineering and technology*. Pearson, 2020.

- [11] R. J. Mohammed, "Manufacturing Processes (ME337), Third year," Basrah, Iraq, 2019.
- [12] M. Saripuddin, Mengenal Logam Sebagai Bahan Teknik. Deepublish, 2021.
- [13] M. P. Groover, Fundamentals of Modern Manufacturing Materials, Processes, and Systems, 5th Edition. 2012.
- [14] *Metal forming handbook*. New York: Springer-Verlag Berlin Heidelberg, 2023. doi: 10.1007/978-3-642-58857-0.
- [15] T. Siewert, S. Liu, D. R. Smith, M. Juan, and C. Madeni, "Database for Solder Properties with Emphasis on New Lead-free Solders," 2002.
- [16] A. Septiawan, M. Mukhnizar, *and Z. Zulkarnain*, "Pembuatan Mesin Tempa Logam Dengan *System Forging Hammer*," *J. Tek. Komputer, Agroteknologi Dan Sains*, vol. 2, no. 1, pp. 1–8, 2023, doi: 10.56248/marostek.v2i1.41.
- [17] K. Sudarmono, "Penempaan," vol. 2, p. 6, 2020, [Online]. Available: https://p2k.stekom.ac.id/ensiklopedia/Penempaan//Proses ini dikenal dengan sebutan, digunakan memiliki kontur yang tipis.
- [18] J. Steven, "Logam," 2022. https://trentonforging.com/what-are-the-different-metal-forging-methods/ (accessed Jul. 25, 2024).
- [19] J. R. Johnson, "Engineering and Technology," vol. 7, no. 5–6. 1987. doi: 10.1177/0270467687007005-605.
- [20] R. Levy, "Memahami Proses, Metode dan aplikasi Penempaan Logam," vol. 1, p. 1, 2023, [Online]. Available: https://www.tfgusa.com/metal-forging-processes-methods/
- [21] A. C. Sentosa, "Teknik Forging Dalam Industri: Metode, Proses dan Pengaplikasiannya," 2024. https://www.alvindocs.com/blog/forging (accessed Jul. 25, 2024).
- [22] P. Y. M. W. Ndaruhadi, "Perbandingan Perubahan Sifat Mekanik Aluminium Pada Proses Tempa Dingin," Media Mesin, vol. 11, no. 1, pp. 23–29, 2010.
- [23] A. Husain, "Penempaan," vol. 1, p. 4, 2021, [Online]. Available: https://engineeringproductdesign.com/knowledge-base/metal-forging/
- [24] D. Aji, D. I. Sumarno, and Triyono, "Analisis Akar Masalah Kegagalan Cacat Retak (Crack) Pada Proses Pembentukan Tempa Dingin (Cold Forming) Mur

- M14," J. Rekayasa Teknol. Nusa Putra, vol. 6, no. 1, pp. 1–10, 2019, doi: 10.52005/rekayasa.v6i1.77.
- [25] W. Goris, "Proses Manufaktur Metal Forming," Mechaworld Dunia Tek. Mesin, vol. 1, 2017.
- [26] A. S. Umartono, "Pengaruh Pengerjaan Dingin (Cold Working) Pada Baja Tahan Karat Jenis Austenitik (Austenitic Stainless Steel) Type 304," J. Ilmuan dan Terap. Tek., vol. 1, no. 1, pp. 65–86, 2012.
- [27] A. Syarief, "Analisa Kekerasan Pisau Potong (Parang) Pada Proses Penempaan (Forging)," Info- Teknik, vol. 9, no. 2, pp. 117–124, 2008.
- [28] A. Herdiana, "Pengertian Metal Forming," vol. 1, p. 12, 2024, [Online]. Available: https://www.coursehero.com/file/71640963/Pengertian-Metal-Formingpdf/
- [29] I. Nugraha, "Proses Metal Forming Dalam Pengolahan Sheet Metal," 2021. https://kreasimudaindonesia.com/pahami-proses-metal-forming-dalam-pengolahan-sheet- metal/ (accessed Jul. 25, 2024).
- [30] D. Priadi, I. Setyadi, and E. S. Siradj, "Pengaruh Kecepatan Dan Temperatur Uji Tarik Terhadap Sifat Mekanik Baja S48C," MAKARA Technol. Ser., vol. 7, no. 1, pp. 21–26, 2010, doi: 10.7454/mst.v7i1.137.

LAMPIRAN

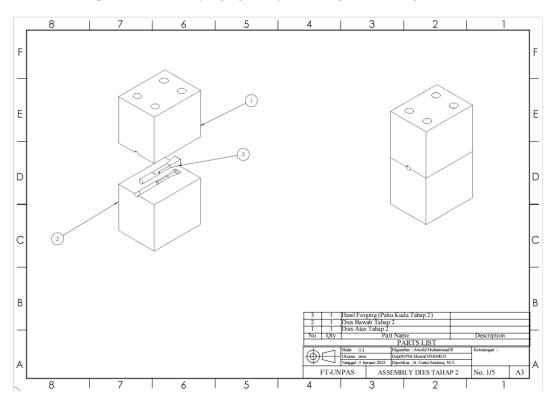
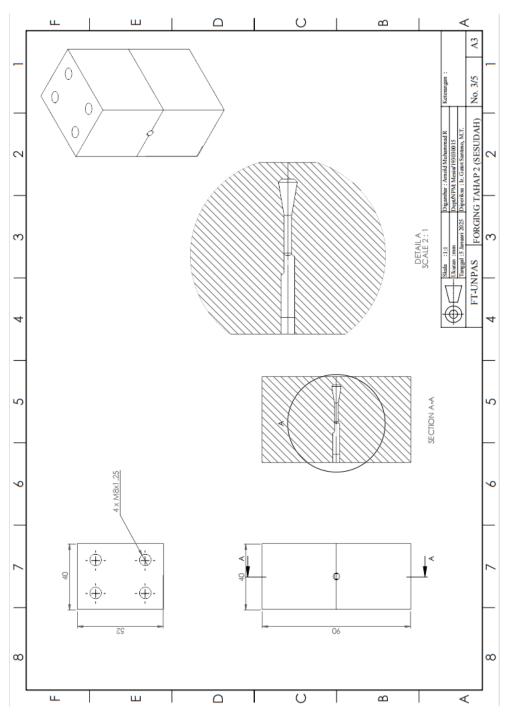
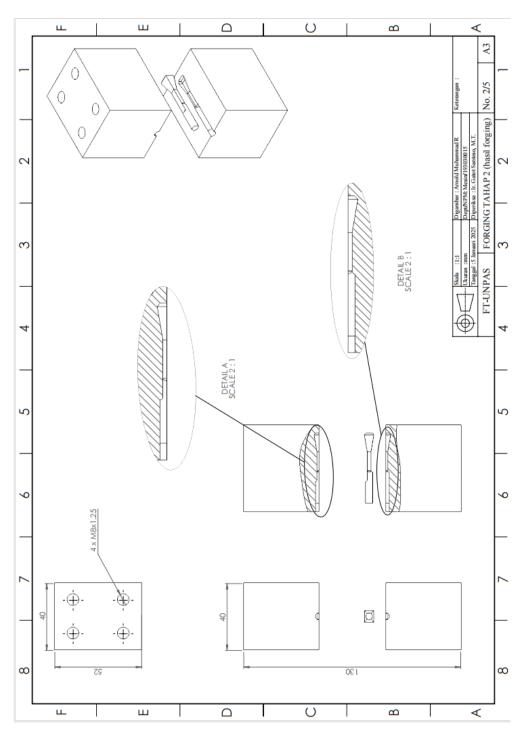

1. Tabel Hasil Perhitungan

Table 7. Gaya proses forging

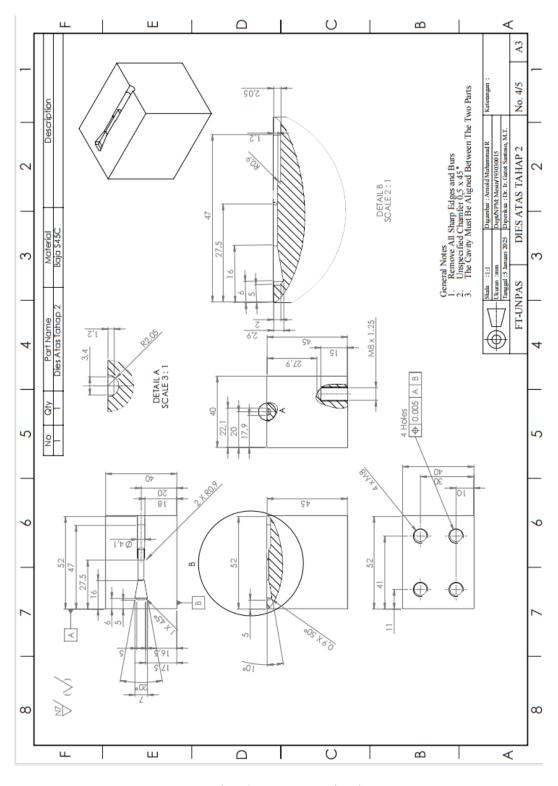
No	Tahapan Proses	Gaya
1	Proses Forging tahap 2	2875,4 N


2. Gambar teknik

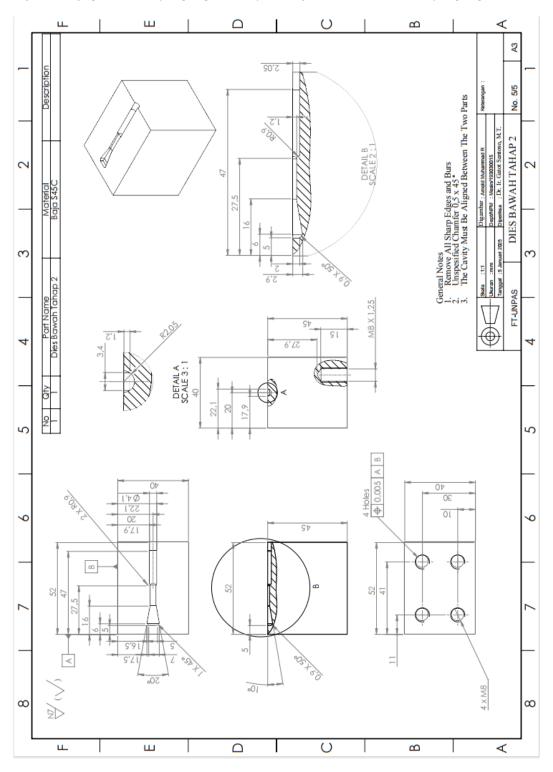
Gambar dibawah ini menunjukan *assembly* dari pengerjaan *forging* pada tahap 2. Gambar dibawah menjelaskan komponen-komponen dan hasil dari proses pengerjaan *forging* pada tahap 2. *Dies* atas ditunjukan dengan nomor satu (1). *Dies* bawah ditunjukan dengan nomor dua (2). Hasil produk atau hasil *forging* ditunjukan dengan nomor tiga (3).


Gambar 44. Assembly Dies Tahap 2

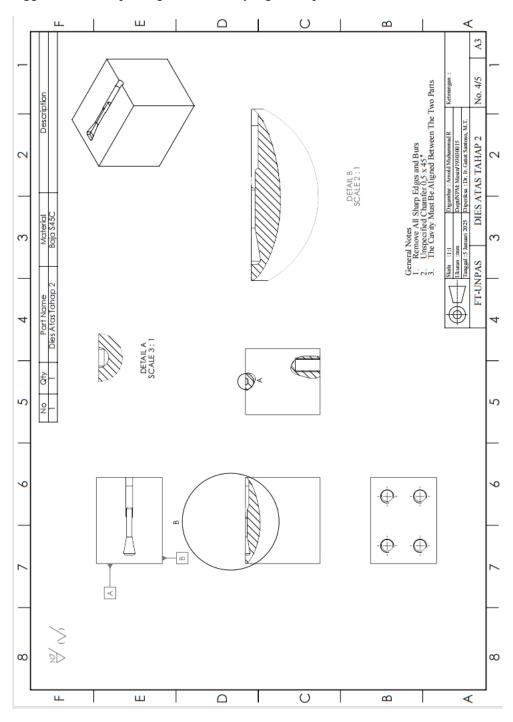
Gambar dibawah ini merupakan gambar ketika kedua komponen *dies* melakukan penempaan. Dimana diperlihatkan kedua rongga cetak harus bertemu sejajar agar tidak menimbulkan kecacatan pada produk yang akan dibuat. Pada daerah ujung paku dilakukan pembebasan guna mengatur aliran material dan pengambilan hasil produk saat proses penempaan.


Gambar 45. Assembly Forging Tahap 2 (Sesudah)

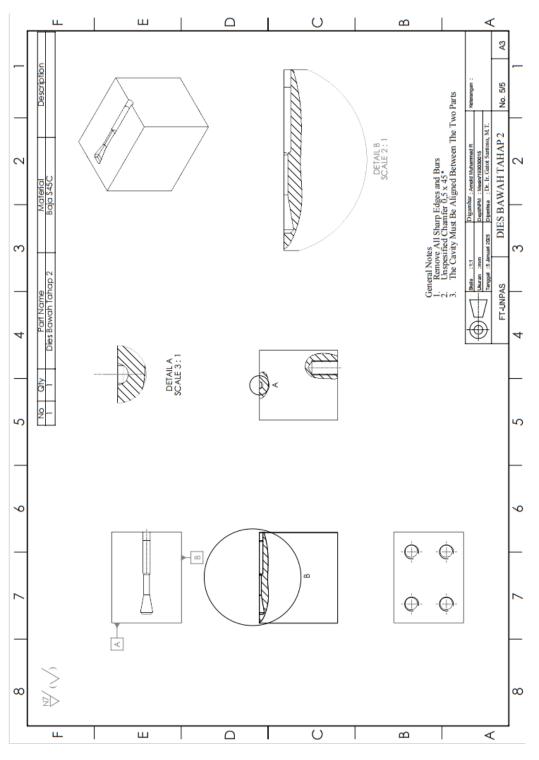
Gambar berikut merupakan gambar setelah *forging* dilakukan. Dimana masing-masing komponen *dies* memiliki rongga cetak (*cavity*). Rongga cetak tersebut lebih memfokuskan proses pembentukan (*forming*) pada daerah kepala dan badan paku. Pada ujung paku tidak ada proses pembentukan. Maka dari itu, ujung paku pada cetakan dibebaskan.


Gambar 46. Forging Tahap 2 (Hasil forging)

Gambar dibawah ini, menunjukan gambar teknik pada *dies* atas tahap 2. Daerah rongga cetak (*cavity*) ditentukan sesuai ukuran paku pada proses tahapan ke-2. Gambar memuat berbagai detail-detail dan ukuran yang dibutuhkan untuk pembuatan *dies*. Dijelaskan juga material yang digunakan yaitu baja S45C dan toleransi yang digunakan.


Gambar 47. Dies Atas Tahap 2

Gambar dibawah ini, menunjukan gambar teknik pada *dies* atas tahap 2. Daerah rongga cetak (*cavity*) ditentukan sesuai ukuran paku pada proses tahapan ke-2. Gambar memuat berbagai detail-detail dan ukuran yang dibutuhkan untuk pembuatan *dies*. Dijelaskan juga material yang digunakan yaitu baja S45C dan toleransi yang digunakan.


Gambar 48. Dies Bawah Tahap 2

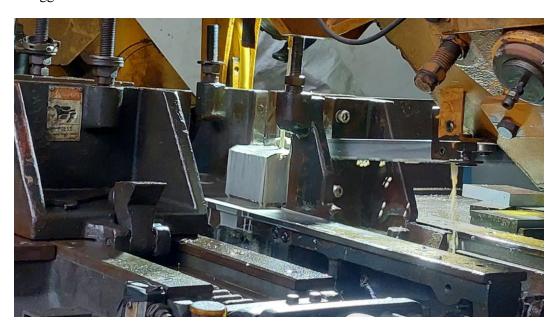
Dibawah ini menjelaskan pandangan depan sampin dan atas dari komponen *dies* atas tahap 2 dari proses pembentukan paku tapal kuda. Hanya menjelaskan pandangan saja tanpa disematkan dimensi-dimensinya. Gambar ini dibuat hanya untuk membandingkan hasil dari proses milling CNC. Dimana hasilnya ada bagian-bagian yang di simplifikasi sehingga tidak mencapai tingkat ketelitian yang diharapkan.

Gambar 49. Dies atas tahap 2 pada proses pembentukan paku tapal kuda (tanpa dimensi)

Dibawah ini menjelaskan pandangan depan sampin dan atas dari komponen *dies* bawah tahap 2 dari proses pembentukan paku tapal kuda. Hanya menjelaskan pandangan saja tanpa disematkan dimensi-dimensinya. Gambar ini dibuat hanya untuk membandingkan hasil dari proses milling CNC. Dimana hasilnya ada bagian-bagian yang di simplifikasi sehingga tidak mencapai tingkat ketelitian yang diharapkan.

Gambar 50. Dies bawah tahap 2 dari proses pembentukan paku tapal kuda (tanpa dimensi)

3. Dokumentasi


Gambar dibawah merupakan material mentah untuk proses machining *dies* paku tapal kuda tahap 2. Material yang digunakan yaitu baja S45C. Ukuran material mentah yang dibutuhkan harus dilebihkan 5-8 mm sesuai kebutuhan pada proses *CNC milling*.

Gambar 51. Material Mentah Baja S45C

Melebihkan ukuran atau dimensi perlukan untuk mencapai dimensi akhir yang diinginkan dan juga memastikan hasil akhir yang presisi sesuai dengan spesifikasi desain. Jika material mentah memiliki dimensi yang terlalu pas dapat menyebabkan hasil pemesinan tidak presisi dan tidak sesuai spesifikasi desain.

Gambar dibawah ini memperlihatkan proses pemotongan material mentah sesuai dimensi material awal yang dibutuhkan untuk proses *CNC milling*. Pemotongan menggunakan alat *bench saw machine*.

Gambar 52. Pemotongan Baja S45C

Gambar dibawah merupakan hasil pemotongan dari *bench saw machine*. Hasil pemotongan inilah yang menjadi material awal untuk proses pembuatan prototipe *dies* tahap 2 paku tapal kuda. Proses pemesinan yang digunakan yaitu *CNC Milling*.

Gambar 53. Hasil pemotongan Material Awal Pemesinan

Berikut adalah alat *drop hammer* yang digunakan untuk pengujian perencanaan proses pembuatan paku tapal kuda tahap 2. Dimana nanti hasil produk dari setiap prosesnya dihitung persentase keberhasilannya. Pada setiap kegagalannya dianalisi faktor apa saja yang menyebabkan hasil produk tidak sesuai. Alat ini memiliki beban minimum 2 kg dan beban maksimum 10 kg. Ketinggian jatuh maksimum alat ini 45 cm dan jarak kerja sebesar 47,9 mm. Ruang kerja pada rangka dies sebesar 80 x 80 x 138,7 mm

Gambar 54. Alat drop hammer.

Gambar berikut menjelaskan hasil penempaan dari tahap 1 hingga tahap 6. Pada setiap tahapannya memiliki perubahan bentuk dan geometri yang sangat signifikan. Namun, terdapat kekurangan pada hasil tahapan ke 6 pada proses pembentukan paku tapal kuda. Penyebab utamanya yaitu dari *cavity dies* itu sendiri dimana hasil dari pemesinan CNC milling tidak dapat menjangkau dimensi yang dibutuhkan pada *dies* tahap 6. Proses pemesinan yang cocok untuk manufaktur *dies* tahap 6 pada proses pementukan paku tapal kuda yaitu dengan proses EDM (*Electrical discharge machining*).

Gambar 55. Hasil penempaan dari tahap 1 hingga tahap 6.

Gambar dibawah ini menunjukan hasil dari tahap 3 proses pembentukan paku tapal kuda. *Dies* yang digunakan yaitu dari hasil penelitian sebelumnya dan dimodifikasi. Modifikasi dilakukan agar kepala dari paku tidak ikut terbentuk.

Gambar 56. Hasil penempaan proses pembentukan paku tapal kuda tahap 3.

Gambar dibawah ini menunjukan hasil dari tahap 4 proses pembentukan paku tapal kuda. *Dies* yang digunakan yaitu dari hasil penelitian sebelumnya dan dimodifikasi. Modifikasi dilakukan agar kepala dari paku tidak ikut terbentuk.

Gambar 57. Hasil penempaan pada proses pembentukan paku tapal kuda tahap 4.