clonal Selection Algorithm
Parallellization With MPJExress

by Dr.ayi Purbasari. St.,,mt. Turnitin Paper -publikasi 13

Submission date: 19-Oct-2021 12:28PM (UTC+0700)

Submission ID: 1677851998

File name: ._Clonal_Selection_Algorithm_Parallelization_with_MPJExpress.pdf (916.48K)
Word count: 5697

Character count: 33269

0
2016 8th Computer Science and Electronic

Engineering Conference (CEEC)

Conference Proceedings

28" — 30" September 2016

University of Essex, UK

Sponsored by Technically Co-Sponsored by
University of Essex, UK IEEE UKRI Computer Chapter

ISBN: 978-1-5090-2050-8 IEEE Catalogue Number: CFP1685L-ART

@
2016 8th Computer Science and Electronic Engineering

Conference (CEEC)

Copyright and Reprint Permission: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy beyond the limit of U.S. copyright
law for private use of patrons those articles in this volume that carry a code at
the bottom of the first page, provided the per-copy fee indicated in the code is
paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923. For reprint or republication permission, email to IEEE Copyrights
Manager at pubs-permissions@ieee.org.

All rights reserved. Copyright ©2016 by IEEE.

ISBN: 978-1-5090-2050-8

Table of Contents

[
2016 8th Computer Science and Electronic Engineering

Conference (CEEC)

28th — 30th September 2016

University of Essex, UK

Paper Title and Authors

8

Page

Forward Error Correction with Physical Layer Network Coding in Two-way Relay Free Space Optical
Links

Zina Abu-almaalie and Zabih Ghassemlooy (Northumbria University, United Kingdom); Alaa A. S. Al-
Rubaie (Ministry of Higher Education, United Kingdom); it Ee Lee (Multimedia University &

| @orthumbria University, Malaysia); Hoa Le Minh (Northumbria University, United Kingdom)

Utilisation of Multipath Phenomenon to Improve the Performance of BCH and RS Codes
Alyaa AL-Barrak (University of Northampton, United Kingdom); Ali Al-Sherbaz (The University of
Northampton & School of Science and Technology, United Kingdom); Triantafyllos Kanakis
{University of Northamptaon, United Kingdom); Robin Crockett (The University of Northampton,
| @nited Kingdom)

Building Semantic Maps for Blind People to Navigate At Home
| @iang Liu, Ruihao Li, Huosheng Hu and Dongbing Gu (University of Essex, United Kingdom)

12

Towards Unobtrusive Ambient Sound Monitoring for Smart and Assisted Environments
_.m:lmf' Griffiths and Jeannette Chin (Anglia Ruskin University, United Kingdom)

18

Enabling Wireless §@ftware Defined Networking in Cloud Based Machine-to-Machine Gateway
Bilal R. Al-Kaseem (Brunel University London, United Kingdom); Hamed Saffa Al-Raweshidy
_.Jniversity of Brunel, United Kingdom)

24

Scalable M2M Roufiing Protocol for Energy Efficient loT Wireless Applications
Bilal R. Al-Kaseem (Brunel University London, United Kingdom); Hamed Saffa Al-Raweshidy
_.Jm‘versiry of Brunel, United Kingdom)

30

Class-Specific Pre-trained Sparse Autoencoders for Learning Effective Features for Document
Classification
_'laysa Abdulhussain and John Q Gan (University of Essex, United Kingdom)

36

An Event Detection Approach for Identifying Learning Evidence in Collaborative Virtual
Environments
_.)moh Felemban, Michael Gardner and Vic Callaghan (University of Essex, United Kingdom)

42

Web-based Visualisation of Head Pose and Facial Expressions Changes: Monitoring Human Activity
Using Depth Data

Grigorios Kalliatakis (University of Essex & TEI Crete, United Kingdom); Nikolaos Vidakis (TEI
jete, Greece); Georgios Triantafyllidis (Aalborg University Copenhagen, Denmark)

48

Focus-Sensitive Dwell Time in EyeBCl: Pilot Study

Giacinto Barresi (istituto Italiano di Tecnologia, taly); Jacopo Tessadori (Italian Institute of
Technology, Italy); Lucia Schiatti (Istitute Italiano di Tecnologia, Italy); Darie Mazzanti (Fondazione
Istituto Italiano di Tecnologia, Italy); Darwin Caldwell {Istituto Italiano di Tecnologia, Italy); Leonardo
Mattos (Italian Institute of Technology, Italy)

54

Refined Data Partitioning for Improved Video Prioritization

Martin Fleury (University of Essex, United Kingdom); Ismail Amin Ali (University of Duhok, Irag);
Sandro Mairon (Instituto de Telecomunicacdes, United Kingdom); Mohammad Ghanbari (University
of Essex, United Kingdom)

60

Generation and VR Visualization of 3D Point Clouds for Drone Target Validation Assisted by an
Operator

Louis-Pierre Bergé (Lab-STICC - Telecom Bretagne - Cranfield University); Nabil Aouf (Cranfield 66
University, United Kingdom); Thierry Duval (Lab-STICC - Telecom Bretagne); Gilles Coppin (Telecom
| @retagne, France)
Interpolation of Low Resolution Digital Elevation Models: A Comparison
Hemalatha Kalimuthu (Multimedia University, Malaysia); Tan WN (MMU, Malaysia); Sin Liang Lim 71
| @ind Mohammad Faizal Ahmad Fauzi (Multimedia University, Malaysia)
Auto-tuning Sliding Mode Control for Induction Motor Drives
Fizatul Aini Patakor (Politeknik Merlimau Melaka, Malaysia); Zulhisyam Salleh and Marizan Sulaiman 77
_.Jniversiti Teknikal Malaysia Melaka, Malaysia); Normah Jantan (Politeknik Merlimau Melaka)
Optimization of Fuzzy Logic Based for Vector Control Induction Motor Drives
Zulhisyam Salleh (Universiti Teknikal Malaysia Melaka, Malaysia); Marizan Sulaiman and Rosli Omar 83
| BUniversiti Teknikal Malaysia Melaka); Fizatul Aini Patakor (Politeknik Merlimau Melaka, Malaysia)
Human Activity Recognition From Automatically Labeled Data in RGB-D Videos
David Jardim and Luis Nunes (Instituto Universitdrio de Lishoa ISCTE-IUL, Portugal); José Miguel Dias 89
_.SC TE, Portugal)
Routing in Hexagonal Computer Networks: How to Present Paths by Bloom Filters Without False
Positives 95
Gok' Caylak Kayaturan and Alexei Vernitski (University of Essex, United Kingdom)
The Use of Biweight Mid Correlation to Improve Graph Based Portfolio Construction 101
| Batrick Veenstra, Colin Cooper and Steve Phelps (King's College London, United Kingdom)
An Income-Based Real-Time Pricing Algorithm Under Uncertainties in Smart Grid 107
_.:Jhar Ahmadzadeh and Kun Yang (University of Essex, United Kingdom)
Robot Assisted Evacuation Simulation
jraheem Sakour and Huosheng Hu (University of Essex, United Kingdom) 112
Network Performance Optimization Using Odd and Even Routing Algorithm for Pipeline Network
Siva Kumar Subramaniam (Brunel University London, United Kingdom); Shariq Mahmood Khan (NED 118
University of Engineering &,; Technology, Pakistan); Rajagopal Nilavalan and Wamadeva
Balachandran (Brunel University, United Kingdom)
Quaternion Linear Colour Edge-Sharpening Filter Using Genetic Algorithm 124
Shagufta Yasmin (University of Essex & Sir Syed University, United Kingdom)
Towards Neuroimaging Real-Time Driving Using Convolutional Neural Networks 130
Carlos Fernandez Musoles (DeMontfort University, United Kingdom)
Serious Games for Fire and Rescue Training 136
Warren Viant, Jon Purdy and Jason Wood (University of Hull, United Kingdom)
A Blind Source Separation Approach Based on IVA for Convolutive Speech Mixtures
Tarigullah Jan (University of Engineering and Technology Peshawar, Pakistan); Mohammad Haseeb 140
Zafar (University of Engineering and Technology, Peshawar, Pakistan); Ruhul Khalil (UET Peshawar,
_llkismn); Majid Ashraf (University of Engineering and Technology, Peshawar, Pakistan)
Recognizing Arabic Sign Language Gestures Using Depth Sensors and a KSVM Classifier
Miada A. Almasre, M (King AbdulAziz University, Saudi Arabia); Hana Alnuaim (King Abdulaziz 146
University, Saudi Arabia)
Video Frame Extraction for 3D Reconstruction 152
Louis G Clift and Adrian F. Clark (University of Essex, United Kingdom)
Hybrid Routing Scheme for Vehicular Delay Tolerant Networks
Sayed Fawad Ali Shah (University of Engineering &,; Technology, Peshawar, Pakistan);
Mohammoad Haseeb Zafar (University of Engineering and Technology, Peshawar, Pakistan); Ivan 158
Andonavic (University of Strathclyde, United Kingdom); Tariqullah Jan {University of Engineering and
Technology Peshawar, Pakistan)
Standard Deviation Based Weighted Clustering Algorithm for Wireless Sensor Networks
Faris AL-Baadani and Sufian Y. Yousef (Anglia Ruskin University, United Kingdom); Laith A Al-Jobouri 164
{University of Essex, United Kingdom); Sourabh Bharti {ABV-indian Institute of Information lechnology
_.nd Management, Gwalior, India)
Quadrotor Transporting with Cable-Suspended Load Using Iterative Linear Quadratic Regulator 168

(iLQR) Optimal Control
Yaser Alothman and Dongbing Gu (University of Essex, United Kingdom)

Rolling Horizon Coevolutionary Planning for Two-Player Video Games
_.m’fn Liu, Diego Perez Liebana and Simon Lucas (University of Essex, United Kingdom)

174

FPGA Optimization of Convolution-based 2D Filtering Processor for Image Processing
Gian-Domenico Licciardo, Carmine Cappetta and Luigi Di Benedetto (University of Salerna, Italy)

180

General Video Game for 2 Players: Framework and Competition
_.a.‘uca Gaina, Diego Perez Liebana and Simon Lucas (University of Essex, United Kingdom)

186

Design and FPGA Implementation of a Real-time Processor for the HDR Conversion of Images and
Videos
Gian-Domenico Licciardo, Carmine Cappetta and Luigi Di Benedetto (University of Salerna, Italy)

192

Energy-Efficient M2M Routing Protocol Based on Tiny-SDWCN with 6LoWPAN

Wasan Twayej (BRUNEL UNIVeRSITY, United Kingdom); Hamed Saffa Al-Raweshidy (University of
Brunel, United Kingdom); Muhammad Khan (Brunel University, United Kingdom); Suad El-Geder
(Brunel Uneversity, United Kingdom)

198

Change-Point Cloud DDoS Detection Using Packet Inter-Arrival Time
Opeyemi Osanaiye (University of Cape Town, South Africa); Kim-Kwang Raymaond Choo (University of
South Australia, Australia); Mghele E. Dlodlo (University of Cape Town, South Africa)

204

Reversible Decision Support System: Minimising Cognitive Dissonance in Multi-Criteria Based
Complex System Using Fuzzy Analytic Hierarchy Process

Md Mahmudul Hasan, Abu-Hassan Kamal, Khin Lwin and Alamgir Hossain (Anglia Ruskin University,
United Kingdom)

210

Optimisation of the Spatial Discretisation of Myelinated Axon Models
Miguel Capllonch Juan, Florian Kolbl and Francisco Sepulveda (University of Essex, United Kingdom)

216

Spectral Clustering Using the kNNMST Similarity Graph
Patrick Veenstra, Steve Phelps and Colin Cooper (King's College London, United Kingdom)

222

Clonal Selection Algorithm Parallelization with MPJExpress
Ayi Purbasari, AP (Universitas Pasundan & Institut Teknologi Bandung, Indonesia)

228

Clonal Selection Algorithm Parallelization
with MPJExpress

Case Study: Traveling Salesman Problem

Ayi Purbasari
Informatics Departement,
Universitas Pasundan, Bandung, Indonesia
pbasariunpas.ac.id

Abstract— This paper exploits the parallelism potential on a
Clonal Selection Algorithm (CSA) as a parallel metaheuristic
algorithm, due the lack of explanation detail of the stages of
designing parallel algorithms. To parallelise population-based
algorithms, we need to exploit and define their granularity for
each stage; do data or functional partition; and choose the
communication model. Using a library for a message-passing
model, such as MPJExpress, we define appropriate methods to
implement process communication. This research results pseudo-
code for the two communication message-passing models, using
MPJExpress. We implemented this pseudo-codes using Java
Language with a dataset from the Travelling Salesman Problem
(TSP). The experiments showed that multicommunication model
using alltogether method gained better performance that
master-slave model that using send-and receive method.

Keyword: Clonal Selection Algorithm, parallelization,
parallel design, message passing model, MPJExpress, TSP.

I. INTRODUCTION

In an optimisation problem, we need to find, among many
alternatives, a best or good enough solution. In our daily life,
there are many instances of optimisation problems. However,
if the problems arise on much bigger scales, they are complex
and need computer algorithms to solve them. The Travelling
Salesman Problem (TSP) in one type of optimisation problem,
where there is a salesman who needs to find the shortest
possible route to visit each city exactly once and return to his
origin city [1]. This problem is a combinatorial optimisation
that needs a sophisticated algorithm to solve it.

To solve an optimisation problem, there are exact methods
that need no constraints or unlimited resources, such as time
and memory. But in the real world there are always limited
resources, and this limitation leads to the development of
heuristic or metaheuristic approaches as a major field in
operation research [2]. These approaches provide optimal or
sub-optimal feasible solutions in a reasonable time that
significantly reduces the time of the search process. However,
the high dimensions of many tasks will always pose problems
and result in time-consuming scenarios. Therefore, parallelism
is an approach that not only aims to reduce the resolution time
but also to improve the quality of the provided solutions. The
latter holds since parallel algorithms usually run a different
search model with respect to sequential ones [2] [3].

A Clonal Selection Algorithm (CSA) is an algorithm that I
inspired by a clonal selection mechanism to provide an
immune response [4]. This inspiration results in some
algorithms in the class of Artificial Immune System (AIS)
algorithms [4]. A CSA (Clonal Selection Algorithm) is one of
the population-based heuristic search algorithms. This
algorithm has been able to solve combinatorial problems [5]
[6], such us the Travelling Salesman Problem (TSP) [7]. Like
other population approaches, this algorithm requires a
significant amount of computation time. To reduce this, many
ideas have attempted to address this problem by adopting a
parallel computation paradigm. Dabrowski and Kobale [8] use
the parallel-CSA computation for a graph colouring problem.
Hongbing et al. [9] apply the CSA parallelism for protein
structure prediction using Open-MPIL Purbasari use CSA for
multi Travelling Salesman Problem (MTSP) [10].

There are two chief issues in evaluating parallel
metaheuristics: how fast solutions can be obtained, and how
far they are from the optimum [2] There are two different
approaches for analysing metaheuristics: a theoretical aspect
(worst-case analysis, average-case analysis) [2] or an
experimental analysis. An experimental analysis usually
consists of applying the developed algorithms to a collection
of problem instances and comparatively reporting the
observed solution quality and consumed computational
resources (usually time) [2][3]. To do this development of
parallel algorithms, we need to analyse and design a parallel
algorithm from a current sequential algorithm.

Most papers on parallel metaheuristics do not explain in
detail the stages of designing a parallel algorithm itself. They
describe the process of transformation of sequential algorithms
into parallel algorithms generally. The focus of research is on
the end result and the performance of parallelism. In this
paper, we will explain the stages and steps in building a
parallel algorithm. These detailed stages will be a guide in
designing parallel algorithms, so that the resulting one will
have a good performance.

This research exploits the available parallelism potential
on Clonal Selection Algorithm (CSA). Parallel models are
built to refer to the principles and concepts of a parallel
computation design from Foster [11].

Systematically, this paper contains: Introduction, The
Proposed Method/Algorithm, Research Methods, Results and
Discussion, and Conclusion.

II. RESEARCH METHOD

This study started by exploiting the parallelism potentials
on a Clonal Selection Algorithm, which lead to several parallel
solutions for the TSP problem. We used a parallel design
method from Foster that has four distinct stages: partitioning,
communication, agglomeration and mapping [11]. The first
two stages focus on concurrency and scalability and seek to
discover algorithms with these qualities. The third and fourth
stages shift to locality and other performance-related issues
[11]. After we create a parallel model algorithm, we will
evaluate it by using theoretical aspects and then give some
guidance to implement it using MPJExpress. Figure 1 below
shows the research method:

+ Paralle]l Designing
+ Evaluating

“ Parallel CSA Model
* Parallel CSA
Implementation usinz,
MPIEspress

= Immune Engineering
Input

Figure 1 Research Method

This research use CSA, which has many parallelism
potentials for the TSP problem. There is a process called
immune engineering that is used to map between CSA
parameters and processes to solve the TSP problem. The
processes consist of parallel design and its evaluation. The
output of this research is a parallel CSA model and the
guidance to implement it.

Starting with a problem specification, we do parallel design
by engaging in partition, determining communication
requirements, agglomerating tasks and, finally, mapping tasks
to processors. Figure 2 shows a brief parallel design. Detailed
description can be found in [11].

(™,
J PROBLEM \.:‘

Figure 2 Design methodology for parallel programs [11]

Parallel design, consists of. Partitioning. The
computation that is to be performed and the data operated

on by this computation are decomposed into small tasks.
Communication. The communication required to
coordinate task execution is determined, and appropriate
communication structures and algorithms are defined.
Agglomeration. The task and communication structures
defined in the first two stages of a design are evaluated
with respect to performance requirements and
implementation costs. Mapping. Each task is assigned to a
processor in a manner that attempts to satisfy the
competing goals of maximizing processor utilization and
minimizing communication costs. Partiton and
communication are the basic principle of desaining parallel
algorithm. This paper will discuss these two stages, and
other stages will be dicussed as a further research.

[I. RESULT AND DISCUSSION

A. Clonal Selection Algorithm Parallelism

Clonal selection is an event in the immune response,
whereby an attack of antigens, B-cells as antibody-producing
cells, would be multiplied if their receptors match with the
antigens’ receptors. Cells that do not match the receptor do not
participate in the selection. The match calculation is known as
affinity maturation. This clonal selection mechanism inspired
Leandro and Von Zuben [12] created Clonal Selection
Algorithm (CSA) to solve the optimisation problem. This
algorithm started with a population generation of B-cells, then
an evaluation scheme to check their affinities. If the affinity is
good enough (depending on the aim of solution), there are
selection mechanisms to get the best individuals. These good
individuals (of B-Cells) are then cloned as a clone factor (a
scalar value) as defined by programmer. After the cloning
process, there is a mutation phase for cloned individuals
according to the mutate factor. The cloned and mutated
individuals are evaluated and selected to replace the worst
individuals in the population. This mechanism is repeated until
a stop condition is reached [12].

For the TSP problem, we have to map between CSA
parameters and the TSP problem [13] in Table 1 below:

Table 1 Mapping CSA parameters and the TSP problem [13]

Clonal Selection TSP Problem

Algorithm step

Population Set of randomly generated tours. There are (n-1)

initialization possibilities that the tours may be raised. This
population is part of the whole tours. The number of
tours is generated by the specified population size.

Affinity Evaluation of affinity checks each tour that has

evaluation occurred and finds the cost required to form the tour.

Selection: affinity Affinity is how close the cost of a tour is to the

maturation optimal/best cost. The closer, the higher affinity will be
selected.

Cloning and Cloning is a process to copy a selected tour, so the

Hypermutation number of copies depends on the clone factor: fi.

Cloned/copied tour will be mutated according to
hypemmutation probability mutate factor: p

After this mutation, we will have the best tours, which
will be replaced by the worst tours in the initial
population. The number of worst tours replaced will
depend on some random size replacement d.

RandomReplace
ment

Clonal Selection TSP Problem

Algorithm step

Stop condition Clonal selection process will be repeated until a stop
condition is obtained. Stopping criteria could be the
number of generations, numbers of populations (tours)

evaluated, or the best cost found.

To solve the TSP problem, we need a matrix that shows

the distances between cities. Here the pseudo code for CSA:
Input: matrix of distances
Output: population contains best tours
Process:
Generate random populaticns of tours
While (not finished)
Evaluate all tour
their affinities
Select best tours from the population
Clone and mutate the best population
RandomReplacement
If {(generation = maxGeneration) Il
found) || (evaluateTours done))
finished = true

from the population, check

{bestTour

CSA consists of one loop that is dependent on each
iteration. Since it is dependent, we couldn’t do functional
decomposition in this loop. The output from a previous
iteration will be used in the next iteration.

To find parallelism potentials for CSA, we need to
describe each stage: evaluation, selection, clone and mutate,
and randomreplacement.

Here we examine the pseudo code for CSA via method
evaluation:
Input: population of tour, matrix
Output: affinity for each tour
Frocess:
For each tour in population
For each element in tour
Check affinity for each element from matrix

The evaluation process involves two loops, which have
potential parallelism. Each loop checks the affinity for each
element in the matrix that refers to the dataset. This evaluation
process indicates the small granularity of jobs, which arises in
line with the population size and the complexity of the issue
(in a tour length, L). We can assume the complexity of the
evaluation process is: population size * the size of the tour =N
*L.

Here we examine the pseudo code for CSA, method
selection:
Input: population of tour
Output: best tour
Frocess:
Sort population

lect tour from population size selectionSize

The selection process involves a sequence and selection of
the best tour. No potential parallelism can be exploited.
Sorting is a fast enough process; when the population data
used is not too large. Size complexity of the selection process
is according to the sorting algorithm used, we assume NlogN.

Here we examine the pseudo code for CSA, method clone

and hypermutation:
Input: best population of tour

Output: copy of the best tour that have been mutated
already
Process:
Calculate relative normalized affinity
For each tour at best population
Count its normalizedBelativeScore
Count number of clone depends on cleneFactor
For each tour at best population
Count its probality depends on mutateFactor and its
normalizedRelativeScore
For I = 1 to number of clone
Copy tour
For each element in tour
If randomizedNumber <= probabilty then
mutate
Count its affinity
Clone and mutate processes are the most complicated
process of the algorithm. There are four loops, 1 independent
loop and 3 nested loops. The independent loop has the task to
calculate the normalised value of each tour. The granularity of
this process is not large and no potential parallelism can be

exploited in this process.

The three nested loops have tasks as follows: the first loop
does iterations of the number of selections, while the second
loop does iterations as per the number of clones, and a third
loop does iterations of a number of possible mutations. The
size and complexity of the clone and mutate processes are =
size selection * clone size (clone factor * population size) *
(length of elements in a tour, L)y=n * (p * N) * L.

Here we examine the pseudo code for CSA, method

RandomReplacement:
Input: population and clone
Output: best tour
Process:
Sort population
Sort clone population
Remove the worst tours from population

Add the best tours from clone population to
population
Get some randomized tours (randomReplacement

size)
Feplace the worst tours in population with new
randomized tours

Randomreplacement is the process of selecting a set worst
tour, which is then replaced by the best tour of the cloned
mutations. This process conducts sorting of the population and
the clone population. There is no repetition of this process.
Since the sorting is done by a sorting library and the sorted
population is not large, this indicates that this potential
parallelism will not be explored further. Size complexity of
this process is in accordance with the sorting algorithm used.
We assume NlogN and BNlogpN respectively.

B. Parallel Clonal Selection Algorithm

After we describe the parallelism potentials, we then start to
parallel design. First step is partition. There are two approaches
in partition: domain/data decomposition and functional
decomposition. Clonal selection deals with two sets of data:
matrix of the dataset and population of tours. Since the
algorithm stages need the whole matrix of a dataset to evaluate
the affinity, we couldn’t do matrix decomposition. Since
population of tours are dependent on each other, we could do
population partition.

Functional decomposition in CSA deals with stages of
evaluation, selection, «clone and mutation, and
randomreplacement. Since all of these stages are dependent
each other, we couldn’t do a functional decomposition for each
one. There is some parallelism potential in each stage. It is
possible to do functional decomposition. Then we have to
calculate the granularity for each potential and compare this to
whole process. Since we need much generation to evaluate the
population, we will need G*
(NL+NlogN-+npNL+NlogN-+pNlogpN), where G is the number
of generation. Granularity is a size of task for cach stage. Table
2 shows the granularity for each stage.

We can conclude that functional decomposition in each
stage is not recommended since their granularities are too small
compared to the whole process. To choose these
parallelim potentials, we need some detail exercise for each
potential functional decompotition as.a further research. Since
we couldn't do functional decomposition for CSA loop,
we did population decomposition. Each processing element is
assigned to a population partition that will be computed for the
CSA stages.

Table 2 Granularity for each stage

Stages Granularity Compare to whole process

Evaluation NL NLY
G*(NL+NlogN+nNL+NlogN+[NlogiN)

Selection NlogN NlogN/
G*(NL+NlogN+nBNL+NlogN+BNlogfiN)

Clone and - pBNL npNL/

hypermutation G*(NL+NlogN+nfNL+NlogN+BNIlogBiN}

RandomReplac NlogN+BN (NlogN+PNlogBNY

ement logpiN G*(NL+NlogN+nBNL+NlogN+BNlogBN)

The second step to designing parallel computing is
communication, a process that transfers data or messages
among processes. This communication depends on parallel
models: message passing, data parallelism and shared memory
[11]. Since the message passing model is probably the most
widely used parallel programming model today, we focus on
this model.

Message passing means sending and receiving messages to
and from tasks. There are multiple tasks, with each task
identified by a unique name, and tasks have their own
encapsulating local data. These systems are said to implement a
single program multiple data (SPMD) programming model
because each task executes the same program but operates on
different data [14].

In a parallel implementation of CSA, we could design the
tasks to execute independently and communicate only in the
end of an iteration just to report temporal solutions. We need a
master process to control and communicate with other
processing elements, called slave processes. This master
process takes a role to synchronise a process between slaves’
processes and to evaluate temporally the solutions produced by
slaves. This design can be seen in Figure 3. In other designs,
we could conduct communication among processing elements
during execution in order to obtain and update the solutions.
There’s no master process to synchronise the task, as each

processing element communicates with each other by sending
and receiving their own temporal solutions. This design can be
seen in Figure 4.

Figure 3 Master-slave
commu nication

Figure 4 Multi-
communication

In the master slave model, the master has task to do:
e Population initialisation
s Send population
e Receive the best population from each slave
e Define the best of the best population and send to
slaves again

Slaves do their tasks to:
e Receive population from master
e (CSA operator (evaluation selection, clone and
hypermutation, replacement)
o Send their own best population to master

In the multi-communication
element does:
e Population initialisation
o CSA operator (evaluation
hypermutation, replacement)
o Sending and receiving of each best population to and
from other processing elements
o Calculate the best of the best population
e Repeat until the condition stops

C. Message Passing Model for Parallel CSA

In this section, we introduce a message-passing
programming and show how designs developed using the
techniques discussed in section B can be adapted for a
message-passing execution. In a message-passing parallel
programming model, processes do cooperative operations on
each process to move data from the address space of one
process to another.

model, each processing

selection, clone and

We use the Message-Passing Interface (MPI), the de facto
message-passing standard for concreteness and MPJExpress, as
one of the libraries that implemented MPL. MPI is not a library
but rather the specification of what such a library should be
[15]. In the MPI programming model, there are two or more
processes that communicate by calling library routines to send
and receive messages to other processes. Processes can use
point-to-point communication operations to send a message
from one named process to another. Single Program Multiple
Data (SPMD) algorithms, which create just one task per
processor, can be implemented with point-to-point or collective
communication routines directly.

A master-slave communication model needs to send and
receive communication in two ways: using a basic MPI point-
to-point communication such as sending and receiving
routines, and or collective communication such as a
broadcasting routine. In a multicomunnication model, we
could use sending-receiving or collective communications such
as allgather.

D. MPJExpress

The Java Grande forum defined MPI-like API for Java as
mpiJava 1.2 APIL, which is the Java equivalent of the MPI 1.1
specification document. MPJ Express is one type of a
reference implementation of the mpiJava 1.2 APL. MPJ
Express is a message-passing library that can execute parallel
Java applications on computed clusters or networks of
computers used by application developers [16]. It is like a
middleware that supports communication between individual
processors of clusters. MPJ Express supported Single Program
Multiple Data (SPMD) [17].

There are three ways to configure MPJ Express: multicore
configuration, cluster configuration and hybrid configuration.
The Multicore Configuration is used to execute MPJ Express
user programs on laptops and desktops. In this research, we
use multicore configuration [18].

There are three methods we used in our MPI programming
model with MPJExpress. Detailed class and methods in the
MPI programming model with MPJExpress can be found in
[14].

Method: Send.
Synopsis:
public veoid Send(java.lang.Object buf,
int cffset, int count,
Datatype datatype, int dest,
int tag)throws MPIException

Example in MPJExpress:

MPI.COMM WORLD.Send(cbjectP, 0, cbjectP.length,
MPI1.0BJECT, dest, tag);

Method: Recw

Synopsis:
public void Recv (java.lang.Object
offset,int count,Datatype datatype,int
tag)throws MPIException

buf,int
source,int

Example in MPJExpress:

MPI.COMM_WORLD.Recv (cbjectP, a,
MPI.0BJECT, 0, taq);

ocbjectP.length,

Method: Allgather

Synopsis:
public void Allgather(java.lang.Object sendbuf,
int sendoffset,int sendcount, Datatype sendtype,
java.lang.Object recvbuf, int recvoffset,
int recveoount, Datatype recvtype)
throws MPIException

Example in MPJExpress:

MPI.COMM WORLD.Allgather(sendBuff, a, unitSize,
MEI.OBJECT, recvBuff, 0, unitSize, MPI.COBJECT) ;

We use object data type to send and receive data, since we
need an object to represent a tour in TSP. Rank is an id for each
process.

E. Implementations Result

With datasets from TSPLIB, we implemented two model
of Clonal Selection Algoritm and result 1) comparison two
model, 2) best cost for several dataset and 3) execution time
for several dataset. We use a mulicore environment for all
expreriments with 4 processing elements, using Toshiba
Portege Z935, Prosesor Intel® Core™ i5-3317*
CPU@]1.70GHz. Memory 4GB, 64-bit Operating System,
Netbean Netbean 7.2.1 with Java 1.7.0_13 HotSpot(TM) 64-
Bit Server V M 23.7-b01.

Figures below describe all of that three results.

Comparing Best Cost
160.000
140,000
120,000
100,000
g
© BOO0O
3
60,000
40.000
20,000
RELEEEERE-EREE L
Generation
— Model-l ——Model2

Figure 5 Best cost comparison for kroal 00.tsp

We can see that model-2 gained lowes best cost for each
generation.

Best cost

350,000
300,000
250.000

200.000

Best cost

150,000

100.000

50.000

=#=Nodel-1 == Model-2

Figure 6 Best cost

Using dataset burmal4, berlin52, ulysses22, tsp225,
ch150, kroal00, and pr76 from TSPLib, we can see in Figure
6 that model-2 is gained lower best cost for each dataset, but
not significant.

Execution time

35.000

E

25.000

15.000

Execution time [ms)
I
:

E

:

~#—Model-1 —E—Nodel-2

Figure 7 Execution Time

With the same dataset, we can see in Figure 7 that model-2
gained lower execution time, but it gained the same execution
time with model-1 in dataset number 7 (pr76.tsp).

IV. DISCUSSION

We described how to implement MJExpress to parallel the
clonal selection algorithm, from parallel designing to
implementation. The most important part of these steps is
parallelism exploitation analysis, especially each of the
process granularities. For a population-based optimisation
algorithm like this clonal selection algorithms, the best
paralleling is achieved by doing their clonal operation at the
same time for different population data and then
communicating with each other. We have two-way
communications, by master-slave communications or by
multicommunication. In their implementations, we need a
different method library. Using master-slave communication is
less simple, or just using point-to-point communication, but it
needs synchronisation between population-generation
controlled by the master process. Using multicommunication,
we could use a global communication, 211gather, which is
more sophisticated but we need to be more careful to define
which data has to be sent between processes. From experiment
result, we can see that using multicommunication model, we
gained lower best cost dan lower execution time.

V. CONCLUSION AND FUTURE WORK

To parallelise population-based algorithms, we need to
exploit and define their granularity for each stage. After that
we do data or functional partition, if necessary, and use the
communication model. Using a library for the message-
passing model, we should define appropriate methods to
implement process communication.

MPJExpress, as one of the implementations of the
message-passing interface specification, has several
communication methods that fit in with the SPMD model.

Two kinds of communication between processes can be

executed for several datasets from the TSP problem, and then
we can compare their performances using execution time and

the best cost achieved. We conclude that multicommunication
model will have better performance than master slave model.

As a future research, we will do some elaboration about
choosing functional decomposition with their each granularity,
several number of processing elements, and larger datasets.
We also can implement using two kinds of MPJExpress
architecture, multicore and multicomputer then compare the
results.

REFERENCES
[1] Donald Davendra, Traveling Salesman Problem, Theory and

Applications, Donald Davendra, Ed. Rijeka, Croatia: InTech, 2010.

Enrque Alba, Parallel Metaheuristic: A New Class of Algorithms.: A

John Wiley & Sons, Inc., 2005.

[3] Teodor Gabriel Crainic, Tatjana Davidovié, and Dufan Ramljak,
"Designing Parallel Meta-Heunstic Methods Designing Parallel Meta-
Heuristic Methods,".

2

[4

Jonathan Timmis and Leandro Nunes Castro, Artificial Imniune Systems:
A New Computational Approach. London: Springer Verlag, 2002.

Kulturel-Konak 8 Ulutas BH, "A Review of Clonal Selection Algorithm
and Its Applications," Anificial Intelligence Review, 2011.

Alsharhan 8, L.R. Al-Enezi. Abbod MF, "Artificial Immune Systems —
Models . Algorithms and Applications." Infernational Jowmal of
Research and Reviews in Applied Science (ILJRRAS), pp. 118-131, May
2010.

Gaber] Bakhouya M, "An Immune Inspired-based Optimization
Algorithm : Application to the Traveling Salesman Problem," AMO -
Advanced Modeling and Optimizaiion, vol. 9, no. 1, pp. 105-116., 2007,

Jacek Dabrowski and Marek Kubale, "Computer Experiments with a

Parallel Clonal Selection Algorithm for the Graph," in [EEE

International Symposium on Parallel and Distributed Processing,

Miami, FL, 2008, pp. 1-6.

Zhu Hongbing, Chen Sicheng, and Wu Jianguo, "Paralleling Clonal

Selection Algorithm with OpenMP." in 31d hiternational Conference on

Intelligent Networks and Intelligent Systems (ICINIS), Shenyang, 1-3

Naov. 2010, pp. 463 - 466.

[10] Purbasari, Ayi, “Using parallel clonal selection algorithm to solve multi
travelling salesperson problem”, in 6th fnternational Workshop on
Computer Science and Engineering, WCSE, Tokyo, 17-19 June 2016

[11] lan Foster. {1995) Designing and Building Parallel Programs. [Online].
http:/www.mes.anl.gov/~itf'dbpp/

[12] Leandro N. de Castro and Fernando J. Von Zuben, "Leaming and
Optimization Using the Clonal Selection Principle," IEEE Transactions
On Evolutionary Computation, vol. 6, no. 3, pp. 239-251, June 2002.

[13] Purbasari, Ayi, “Data Partition and Communication on Parallel Heuristik

Model Based on Clonal Selection Algorthm”, TELKOMNIKA, vol

Voll3, Nol, 2015, pp 193 - 201

[14] Blaise Barney. (2012) Introduction to Parallel Computing. [Online].
https://computing.llnl. gov/tutorials/paralle]l_comp/#Designing

[5

[6

[7

[8

[v

[15] Argonne National Lab Mathematics and Computer Science. The
Message Passing Interface (MPT). [Online].
http:/fwww.mes.anl.gov/research/projects/ mpi/

[16] Mark Baker and Bryan Carpenter, "MPI: A New Look at MPI for Java,"
in Poster Paper in All Hands Meeting (AHM), 2005.

[17] Mark Baker, Bryan Carpenter, and Aamir Shafi, "MPJ Express: towards
thread safe Java HPC," in [EEE Imernational Conference on Cluster
Computing, 2006,

[18] Aamir Shafi, Jawad Manzoor, Kamran Hameed, Bryan Carpenter, and
Mark Baker, "Multicore-enabling the MPJ Express messaging library."
in The 8th International Conference on the Principles and Practice of
Programming in Java - ACM, 2010,

clonal Selection Algorithm Parallellization With MPJExress

ORIGINALITY REPORT

20% 14% 13%

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS

Ay

STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

7%
* jeeexplore.ieee.org

Internet Source

Exclude quotes On Exclude matches

Exclude bibliography On

Off

