Analisis Beban Kerja Pegawai Secara Subjektif Dengan Menggunakan Metoda Nasa-TLX (Studi Kasus Pada Bagian Proses Manufaktur Di PT.Agronesia Divisi Industri Plastik - Bandung)

M.Yani Syafei & Wahyu Katon

Dosen Teknik Industri, Fakultas Teknik Universitas Pasundan Bandung. <u>yanisyafei@gmail.com</u>, <u>whyne4ever@gmail.com</u>

Abstrak. PT. Agronesia Divisi Industri Plastik memiliki karyawan yang kompeten sehingga dapat menunjang keberhasilan perusahaan dan dapat bersaing dengan perusahaan lain. Adapun kinerja perusahaan tergantung dari baik-buruknya kinerja pegawai. Untuk melihat kinerja pegawai, salah satunya dengan melihat beban kerja yang dirasakan pegawai selama bekerja, apakah beban kerjanya kategori ringan (under load), kategori sedang (optimal load), atau kategori tinggi (over load).

Pengukuran beban kerja secara subjektif merupakan suatu cara yang sederhana dan praktis untuk mengetahui seberapa besar beban kerja yang dirasakan pegawai, baik beban kerja mental maupun beban kerja fisik. Adapun salah satu metoda untuk pengukuran beban kerja secara subjektif adalah metoda NASA-TLX. Metoda ini merupakan prosedur rating multidimensional yang membagi beban kerja atas dasar ratarata pembebanan enam subskala, yaitu meliputi Mental Demands (MD), Physical Demands (PD), Temporal Demands (TD), Own Performance (OP), Frustation Level (FR), dan Effort (EF).

Berdasarkan hasil pengolahan data yang dilakukan terhadap 72 pegawai, terdapat 68 pegawai yang menilai beban kerja mereka sudah overload (94%) dan 4 orang pegawai yang menilai beban kerja sudah optimal load (6%). Berdasarkan bobot variabel NASA-TLX, diperoleh kategori Beban Kerja Fisik dengan total rata-rata bobot sebesar 60% (yakni PD = 29%; OP = 22%;dan TD =10%), dan kategori Beban Kerja Mental dengan total rata-rata bobot sebesar 40% (yakni EF = 25%; MD = 10%; dan FR =4%). Dengan demikian pekerjaan pada bagian proses manufaktur ini termasuk kategori pekerjaan yang relatif dominan beban kerja fisik dan diimbangi beban kerja mental yang cukup. Dari hasil uji chi-square yang dilakukan diperoleh bahwa Ho ditolak, artinya beban kerja pegawai dependent terhadap pembagian shif kerja. Dengan demikian penugasan shift kerja, baik shift pagi, shift siang, dan shift malam berpengaruh terhadap beban kerja yang dirasakan pegawai.

Kata Kunci: Beban Kerja, Beban Kerja Mental, Pengukuran Beban Kerja Subjektif, NASA-TLX.

1. PENDAHULUAN

1.1. Latar Belakang Masalah

PT. Agronesia Divisi Industri Plastik merupakan salah satu unit usaha dari PT. Agronesia yang memiliki berbagai jenis usaha industri. Jenis usaha industri tersebut yaitu industri barang teknik karet dengan merek dagang "INKABA", industri makanan minuman dengan merek dagang "BMC", industri es dengan merek dagang "SARIPETOJO" dan

industri kemasan plastik yang merupakan jenis usaha baru yang mulai beroperasi pada akhir tahun 2005.

PT. Agronesia Divisi Industri Plastik memiliki karyawan yang kompeten sehingga menunjang keberhasilan perusahaan ini dan dapat bersaing dengan perusahaan lain. Salah satu elemen yang menjadi kunci keberhasilan suatu perusahaan adalah faktor sumber daya manusia. Sumber daya manusia menjadi sangat penting dalam meraih daya saing terhadap competitor, karena pekerja merupakan suatu asset yang sangat berharga. Oleh karena itu, pengelolaan sumber daya manusia merupakan faktor yang perlu mendapat perhatian khusus dalam mencapai kinerja perusahaan yang baik.

Setiap pekerjaan yang dilakukan pasti akan memiliki beban kerja . Beban kerja tersebut dibagi dua yaitu beban kerja fisik dan beban kerja mental. Apabila kompetensi pekerja lebih tinggi daripada tuntutan pekerjaan, akan muncul perasaan jenuh terhadap pekerjaan yang mereka lakukan. Sebaliknya, jika kompetensi pekerja lebih rendah daripada tuntutan pekerjaan, maka akan muncul kelelahan atau keletihan yang berlebih terhadap pekerjaan yang mereka lakukan (Hancock, 1988; Pulat,1992).

Beban Kerja merupakan variabel penghubung antara pekerjaan (*task*), tuntutan lingkungan (*environmental demand*), dan performansi operator (Hancock, 1988), dimana Beban kerja fisik akan lebih mudah diketahui dari keadaan fisik atau tubuh pegawai dibandingkan beban kerja mental, karena beban kerja mental lebih berkaitan dengan psikologis pegawai dalam melakukan pekerjaannya. Semakin tinggi beban kerja maka pegawai akan cenderung lebih mudah melakukan kesalahan dalam bekerja.

Berdasarkan catatan perusahaan bahwa rata-rata kehadiran pegawai selama tahun 2010 yaitu sebesar 99%, terutama pada bulan Februari, Maret, Juni, dan Oktober menunjukkan tingkat kehadiran terendah karena pegawai banyak yang mengajukan cuti biasa dan cuti sakit. Sedangkan kecelakaan kerja masih terjadi meskipun tidak ada catatan resmi, tetapi berdasarkan tingkat kecelakaan kerja pegawai di Indonesia masih tergolong tinggi dimana pada tahun 2009 terjadi 54.398 kasus kecelakaan kerja, dan pada tahun 2010 sampai bulan juli terjadi 47.919 kasus kecelakaan kerja dan diperkirakan akan meningkat dibandingkan tahun 2009 (Sumber : Pembinaan dan Pengawasan Ketenagakerjaan (PPK), Kementrian Ketenagakerjaan & Transmigrasi). Tingkat kehadiran dan tingkat kecelakaan kerja pegawai akan berhubungan dengan kinerja pegawai yang dihasilkan, sebagai dampak dari beban kerja yang tidak sesuai atau tinggi yang dirasakan oleh pegawai.

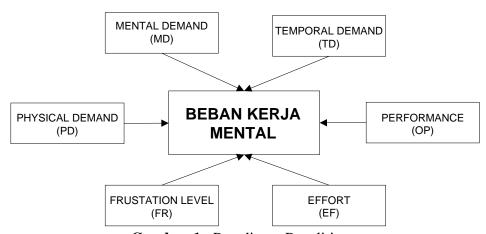
1.2 Perumusan Masalah

Berdasarkan latar belakang di atas, maka dalam penelitian ini dirumuskan permasalahan adalah :

- 1. Seberapa besar beban kerja yang diterima pegawai pada bagian proses manufaktur di PT. Agronesia Divisi Industri Plastik?
- 2. Bagaimana pengaruh signifikansi beban kerja terhadap pembagian shift kerja yang dialami oleh pegawai pada bagian proses manufaktur pada saat bekerja ?

1.3 Tujuan Penelitian

Adapun tujuan yang ingin dicapai pada penelitian ini adalah:


- 1. Untuk mengetahui seberapa besar beban kerja (fisik atau mental) yang dialami oleh pegawai pada bagian proses manufaktur di PT. Agronesia Divisi Industri Plastik.
- 2. Untuk mengetahui pengaruh signifikansi beban kerja terhadap pembagian shift kerja yang dialami oleh pegawai pada bagian proses manufaktur di PT. Agronesia Divisi Industri Plastik.

2. METODOLOGI PENELITIAN

Dalam metodologi penelitian ini akan dijelaskan model yang digunakan dalam pemecahan masalah pengukuran beban kerja pegawai, dan langkah-langkah perhitungannya.

2.1 Model Pemecahan Masalah

Didalam penelitian ini diajukan suatu model usulan pemecahan masalah untuk menyelesaikan masalah-masalah yang ada dengan menyajikan teori-teori yang dianggap dapat membantu dalam mengatasi persoalan yang timbul pada pelaksanaan atau sistem kerja, sehingga tujuan penelitian dapat tercapai. Model pemecahan masalah yang digunakan dalam penelitian ini adalah metoda pengukuran beban kerja dengan menggunakan metoda NASA-TLX. Metoda ini digunakan untuk mengukur besarnya beban kerja pegawai yang didasarkan pada 6 variabel, yaitu (Hart & Staveland, 1988) meliputi *Mental Demand* (MD), *Physical Demand* (PD), *Temporal Demand* (TD), *Performance* (OP), *Frustation Level* (FR), dan *Effort* (EF). Keenam variabel ini merupakan rangkaian indikator yang dirasakan oleh pegawai yang menimbulkan beban kerja mental dan fisik pada pekerjaan yang mereka kerjakan. Secara garis besar, paradigma penelitian disajikan pada gambar 1.

Gambar 1. Paradigma Penelitian

2.2 Langkah-Langkah Pemecahan Masalah

Untuk mendapatkan hasil penelitian yang sesuai dengan tujuan yang ingin dicapai, maka dibuatkan tahapan-tahapan pemecahan masalah sebagai berikut :

- 1. Identifikasi uraian pekerjaan sesuai dengan definisi ke enam variabel NASA-TLX. Setiap pegawai dilakukan identifikasi mengenai uraian pekerjaan yang disesuaikan dengan definisi ke enam variabel NASA-TLX sebagaimana disajikan pada tabel 1.
- 2. Pembuatan Kuesioner untuk mengukur beban kerja pegawai. Kuesioner dibagi dalam dua bagian, yaitu bagian pertama berisikan 15 pertanyaan tentang pilihan variabel mana yang paling penting dari variabel berpasangan yang diajukan. Sedangkan bagian kedua berisi penilaian (*rating*) beban kerja sesuai dengan 6 variabel NASA-TLX, yang dilakukan oleh setiap pegawai yang diukur. Pemberian *rating* (penilaian bobot kerja) untuk setiap variabel dimulai dari 0 s/d 100 dan dalam satuan persen (%), hal ini untuk memudahkan responden dalam melakukan pengisian kuesioner. Untuk tingkatan-tingkatannya dibagi menjadi 5, yaitu sangat rendah, rendah, sedang, tinggi, dan sangat tinggi. Untuk sangat rendah dimulai dari 0% s/d 20%, sedangkan untuk rendah dimulai dari 21% s/d 40%, untuk sedang dimulai dari 41% s/d

60%, kemudian untuk tinggi dimulai dari 61% s/d 80%, dan untuk sangat tinggi dimulai dari 81% s/d 100%.

Tabel 1. Definisi Variabel NASA-TLX

VARIABEL	KETERANGAN
MENTAL DEMAND (MD)	Seberapa besar aktivitas mental dan persepsi yang dibutuhkan untuk melakukan suatu pekerjaan (seperti berfikir, memutuskan, mengingat, merencanakan, dan sebagainya)? Apakah pekerjaan tsb mudah atau sulit, sederhana atau kompleks?
PHY SICAL DEMAND (PD)	Seberapa besar aktivitas fisik yang dibutuhkan dalam melakukan suatu pekerjaan (seperti : mendorong, menarik, mengontrol, memutar, dan sebagainya)? Apakan pekerjaan tersebut mudah atau sulit, lambat atau cepat, ringan atau berat?
TEMPORAL DEMAND (TD)	Seberapa lama tekanan (pressure) yang dirasakan selama elemen pekerjaan berlangsung? Apakah pekerjaan perlahan dan santai atau cepat dan melelahkan?
PERFORMANCE (OP)	Seberapa besar keberhasilan seseorang di dalam menyelesaikan pekerjaannya? dan seberapa puas dengan hasil kinerja yang dicapai?
FRUSTATION LEVEL (FR)	Seberapa besar rasa tidak aman, putus asa, tersinggung, terganggu yang dirasakan selama bekerja?
EFFORT (EF)	Seberapa keras usaha (termasuk mental dan fisik) yang dibutuhkan dalam menyelesaikan suatu pekerjaan?

3. Penentuan Responden

Pegawai yang dijadikan responden adalah pegawai di bagian proses manufaktur, yaitu bagian mesin *Blowing*, bagain PPIC, dan bagian mesin *Injection* yang seluruhnya berjumlah 93 orang. Kemudian yang dijadikan sampel sebanyak 72 pegawai di bagian proses manufaktur.

4. Perhitungan Uji Konsistensi Responden

Dalam menilai kuesioner bagian pertama tentang variabel mana yang paling penting terhadap penilaian variabel berpasangan, maka responden diuji konsistensinya dalam menjawab kuesioner pertama tersebut dengan menggunakan uji consistency index (CI). Jika nilai $CR \leq 10\%$, maka responden konsisten dalam menilai pasangan variabel NASA-TLX.

5. Perhitungan Beban Kerja dengan menggunakan NASA-TLX

Perhitungan beban kerja dilakukan didasarkan pada hasil kuesioner yang telah diisi oleh pegawai. Tahap pertama adalah menghitung frekwensi dan pembobotan yang dihasilkan dari proporsi terhadap penilaian tingkat kepentingan dari variabel berpasangan. Sedangkan tahap kedua adalah menghitung besarnya beban kerja dengan cara mengkalikan hasil pembobotan dari tahap pertama dengan hasil penilaian (rating) beban kerja terhadap ke enam variabel NASA-TLX. Untuk memudahkan perhitungan maka pengolahannya dapat menggunakan *software* NASA-TLX. Berdasarkan skor beban kerja ini, maka akan diketahui kategori beban kerja yang dirasakan pegawai, apakah kategori beban kerja rendah (*under-load*) : skor < 0,40, beban kerja optimal (*optimal-load*) : 0,40 ≤ skor < 0,60, atau beban kerja berlebihan (*over-load*) : skor ≥ 0,60.

6. Perhitungan Uji Signifikansi Beban Kerja terhadap Pembagian Shift Kerja Untuk menguji tingkat signifikansi beban kerja para pegawai dilakukan uji proporsi dengan menggunakan metoda *Chi-Square*, dengan perumusan hipotesis adalah:

Ho : $P_1 = P_2 = = P_i$ (Beban kerja pekerja *independent* terhadap pembagian *shift* kerja)

 H_1 : (Beban kerja pekerja *dependent* terhadap pembagian *shift* kerja), dimana i = 1, 2, 3, ..., k (k = jumlah pekerja yang diteliti).

3. PENGOLAHAN DAN PEMBAHASAN MASALAH

3.1. Perhitungan Beban Kerja dengan Metoda NASA-TLX

Pegawai yang dijadikan responden adalah pegawai di bagian proses manufaktur, yaitu bagian mesin *Blowing*, bagain PPIC, dan bagian mesin *Injection* yang seluruhnya berjumlah 93 orang. Kemudian yang dijadikan sampel sebanyak 72 pegawai di bagian proses manufaktur. Berdasarkan hasil perhitungan dengan software NASA-TLX terhadap responden pertama (Yuli Yani), hasilnya disajikan pada tabel 2.

Tabel 2. Hasii Pernitungan Beban Kerja dengan NASA-1 LX										
NASA Task Data										
Scale	Value	Weight								
Mental Demand	55	0,133333								
Physical Demand	75	0,266667								
Temporal Demand	60	0								
Performance	70	0,266667								
Effort	70	0,266667								
Frustration	40	0,066667								
Total Workload	67,3334									

Tabel 2. Hasil Perhitungan Beban Kerja dengan NASA-TLX

Dengan melihat hasil di atas, maka dapat diketahui bahwa beban kerja yang diterima oleh responden kesatu (Yuli Yani) adalah sebesar 67,3334% dan ini termasuk kategori beban kerja yang tinggi (*overload*). Adapun hasil rekapitulasi dari keseluruhan pengolahan data untuk responden ke-1 sampai dengan responden ke-72 disajikan pada tabel 3.

3.2. Uji Signifikansi Beban Kerja

Untuk menguji tingkat signifikansi beban kerja pegawai terhadap pembagian *shift* kerja (pagi, siang, dan malam) pada bagian proses manufaktur dilakukan uji hipotesis proporsi dengan menggunakan metoda *Chi-Square* (Sugiyono,2004), yaitu sebagai berikut .

a. Perumusan Hipotesis:

Ho: Beban kerja pekerja *independent* terhadap pembagian *shift* kerja.

H1: Beban kerja pekerja dependent terhadap pembagian shift kerja.

b. Uji Statistik dengan menggunakan *chi-square* adalah sebagai berikut : Adapun data frekuensinya disajikan pada tabel 4.

Tabel 4. Data frekuensi *shift* kerja terhadap beban kerja.

	Beban k	Total	
	Optimal Load	Overload	TOtal
Shift Pagi	4	23	27
Shift Siang	0	22	22
Shift Malam	0	23	23
Total	4	68	72

Sedangkan perhitungan frekuensi ekspektasi disajikan pada tabel 5. **Tabel 3.** Hasil Rekapitulasi Perhitungan Beban Kerja Pegawai dengan NASA-TLX

						Rating							Bobot						Kategori
No.	Nama	λ max	CI	CR	Konsisten	MD	PD	TD	OP	EF	FR	MD	PD	TD	OP	EF	FR	Work Load	Beban Kerja
1	Yuli Yani	6,40	0,08	0,06	Konsisten	55	75	60	70	70	40	0,13	0,27	0,00	0,27	0,27	0,07	67,33	Overload
2	Novi Susan	6,64	0,13	0,10	Konsisten	45	75	60	80	70	65	0,13	0,20	0,07	0,20	0,33	0,07	68,67	Overload
3	Hanny Dewi N	6,64	0,13	0,10	Konsisten	55	60	30	70	65	25	0,13	0,27	0,00	0,20	0,27	0,13	58,00	Optimal Load
4	Cristiani	6,40	0,08	0,06	Konsisten	70	80	40	70	80	10	0,13	0,27	0,00	0,27	0,27	0,07	71,33	Overload
5	Yuhaeni	6,30	0,06	0,05	Konsisten	50	70	45	75	75	15	0,13	0,27	0,07	0,33	0,13	0,07	64,33	Overload
6	Lia N.	6,30	0,06	0,05	Konsisten	55	75	35	70	65	20	0,07	0,33	0,13	0,20	0,27	0,00	64,67	Overload
7	Evi Hayati	6,30	0,06	0,05	Konsisten	45	75	45	70	80	20	0,13	0,33	0,07	0,20	0,27	0,00	69,33	Overload
8	Erik Hendrik	6,30	0,06	0,05	Konsisten	55	80	60	70	75	15	0,07	0,33	0,13	0,20	0,27	0,00	72,33	Overload
9	Dina R	6,30	0,06	0,05	Konsisten	60	75	45	75	75	20	0,13	0,33	0,07	0,20	0,27	0,00	71,00	Overload
10	Amelia	6,30	0,06	0,05	Konsisten	60	75	45	80	75	25	0,07	0,27	0,13	0,33	0,20	0,00	71,67	Overload
11	Mega S.	6,30	0,06	0,05	Konsisten	65	80	50	80	70	20	0,13	0,33	0,07	0,20	0,27	0,00	73,33	Overload
12	Lia	6,30	0,06	0,05	Konsisten	50	80	55	75	75	20	0,07	0,33	0,13	0,20	0,27	0,00	72,33	Overload
13	Lina Irawan	6,52	0,10	0,08	Konsisten	40	75	60	80	75	50	0,07	0,20	0,00	0,27	0,27	0,20	69,00	Overload
14	Martina	6,40	0,08	0,06	Konsisten	40	80	50	80	70	30	0,07	0,20	0,07	0,33	0,27	0,07	69,33	Overload
15	Santi M.	6,30	0,06	0,05	Konsisten	65	80	45	75	75	20	0,07	0,33	0,13	0,20	0,27	0,00	72,00	Overload
16	Romli	6,64	0,13	0,10	Konsisten	60	75	50	75	75	40	0,13	0,20	0,07	0,20	0,33	0,07	69,00	Overload
17	Acep Irham	6,50	0,10	0,08	Konsisten	50	80	50	70	75	25	0,07	0,27	0,07	0,27	0,27	0,07	68,33	Overload
18	M. Ridwan	6,30	0,06	0,05	Konsisten	45	75	50	70	75	35	0,07	0,33	0,13	0,20	0,27	0,00	68,67	Overload
19	Ricky Suryadi	6,30	0,06	0,05	Konsisten	60	80	70	75	75	30	0,13	0,33	0,07	0,20	0,27	0,00	74,33	Overload
20	Rizal	6,30	0,06	0,05	Konsisten	45	80	55	75	75	45	0,07	0,27	0,13	0,20	0,33	0,00	71,67	Overload
21	Nanang P.	6,30	0,06	0,05	Konsisten	70	75	50	65	75	30	0,00	0,33	0,13	0,20	0,27	0,07	66,67	Overload
22	Dodo Wandono	6,30	0,06	0,05	Konsisten	75	80	45	70	75	20	0,13	0,33	0,07	0,20	0,27	0,00	73,67	Overload
23	Dani Fahrizal	6,30	0,06	0,05	Konsisten	70	80	55	75	75	25	0,07	0,33	0,13	0,20	0,27	0,00	73,67	Overload
24	Hasan Sadikin	6,40	0,08	0,06	Konsisten	65	80	50	70	75	15	0,13	0,27	0,07	0,27	0,27	0,00	72,00	Overload
25	Marnoto	6,30	0,06	0,05	Konsisten	70	80	50	65	75	25	0,07	0,33	0,13	0,20	0,27	0,00	71,00	Overload
26	Veri Sanjaya	6,40	0,08	0,06	Konsisten	70	75	45	70	75	20	0,07	0,27	0,13	0,27	0,27	0,00	69,33	Overload
27	Moch. Ginanjar	6,30	0,06	0,05	Konsisten	70	80	60	65	80	25	0,07	0,33	0,13	0,20	0,27	0,00	73,67	Overload
28	Agus Yuhandi	6,30	0,06	0,05	Konsisten	75	80	50	65	80	20	0,13	0,33	0,07	0,20	0,27	0,00	74,33	Overload
29	Agus P	6,30	0,06	0,05	Konsisten	70	75	45	70	75	25	0,00	0,33	0,13	0,20	0,27	0,07	66,67	Overload
30	Dadan Ramdhan	6,30	0,06	0,05	Konsisten	75	80	50	65	75	30	0,07	0,33	0,13	0,20	0,27	0,00	71,33	Overload
31	Safarudin	6,30	0,06	0,05	Konsisten	65	70	50	70	75	15	0,13	0,33	0,07	0,20	0,27	0,00	69,33	Overload
32	Doni	6,30	0,06	0,05	Konsisten	70	80	60	70	75	20	0,07	0,33	0,13	0,20	0,27	0,00	73,33	Overload
33	Robi Yansyah	6,30	0,06	0,05	Konsisten	70	80	45	65	75	20	0,13	0,33	0,07	0,20	0,27	0,00	72,00	Overload
34	Heri Ramdani	6,30	0,06	0,05	Konsisten	70	80	45	65	80	25	0,07	0,33	0,13	0,20	0,27	0,00	71,67	Overload
35	Sandi	6,30	0,06	0,05	Konsisten	40	80	55	75	75	25	0,07	0,33	0,13	0,27	0,20	0,00	71,67	Overload
36	Tahyani	6,30	0,06	0,05	Konsisten	20	75	50	75	75	30	0,13	0,33	0,07	0,27	0,20	0,00	66,00	Overload
37	Samtriawan	6,40	0,08	0,06	Konsisten	50	70	65	75	75	45	0,07	0,27	0,07	0,20	0,33	0,07	69,33	Overload
38	Nunu N.	6,40	0,08	0,06	Konsisten	55	80	60	75	75	45	0,07	0,27	0,13	0,27	0,27	0,00	73,00	Overload
39	Asep S.	6,40	0,08	0,06	Konsisten	50	75	65	70	70	50	0,00	0,27	0,13	0,27	0,27	0,07	69,33	Overload
40	Andry	6,50	0,10	0,08	Konsisten	45	80	50	75	80	40	0,07	0,27	0,07	0,27	0,27	0,07	71,67	Overload
41	Sophian	6,64	0,13	0,10	Konsisten	50	80	65	80	75	50	0,07	0,20	0,13	0,20	0,33	0,07	72,33	Overload
42	Budi M.	6,30	0,06	0,05	Konsisten	60	80	55	75	75	45	0,07	0,33	0,13	0,20	0,27	0,00	73,00	Overload
43	Ridha R.	6,64	0,13	0,10	Konsisten	45	75	50	75	75	50	0,13	0,20	0,07	0,20	0,33	0,07	67,67	Overload
44	Robiansyah	6,40	0,08	0,06	Konsisten	65	80	45	75	75	25	0,13	0,27	0,00	0,27	0,27	0,07	71,67	Overload
45	Cepi Permana	6,30	0,06	0,05	Konsisten	70	75	45	75	75	25	0,07	0,27	0,13	0,33	0,20	0,00	70,67	Overload
46	Sarifudin	6,40	0,08	0,06	Konsisten	55	80	60	75	75	30	0,07	0,27	0,07	0,20	0,33	0,07	71,00	Overload
47	Nanang Qosim	6,30	0,06	0,05	Konsisten	65	80	40	60	75	30	0,07	0,33	0,13	0,20	0,27	0,00	68,33	Overload
48	Ryan Aldiano	6,40	0,08	0,06	Konsisten	50	75	55	75	75	30	0,07	0,33	0,07	0,20	0,27	0,07	69,00	Overload
49	Ade Arif B.	6,40	0,08	0,06	Konsisten	45	80	50	75	75	25	0,07	0,33	0,07	0,20	0,27	0,07	69,67	Overload
50	Deni Luki N.	6,40	0,08	0,06	Konsisten	65	80	50	75	75	20	0,13	0,27	0,07	0,27	0,27	0,00	73,33	Overload
51	Yana S.	6,40	0,08	0,06	Konsisten	45	75	50	70	75	30	0,07	0,33	0,07	0,20	0,27	0,07	67,33	Overload
52	Candra E.	6,40	0,08	0,06	Konsisten	50	70	60	75	75	40	0,07	0,27	0,07	0,20	0,33	0,07	68,67	Overload

	_			
Tabel	3.	(Lan	iutan)	١

NI-	No. Nama λ max CI CR Konsisten					Rating						Bobot						Work	Kategori
No.	Nama	λ max	5	CK	Konsisten	MD	PD	TD	OP	EF	FR	MD	PD	TD	OP	EF	FR	Load	Beban Kerja
53	Bonni	6,52	0,10	0,08	Konsisten	45	50	65	45	45	70	0,27	0,20	0,07	0,20	0,07	0,00	54,00	optimal load
54	Adhi N	6,30	0,06	0,05	Konsisten	55	20	75	85	50	50	0,27	0,00	0,13	0,33	0,20	0,07	66,33	over load
55	Deden GW	6,42	0,08	0,07	Konsisten	80	50	70	85	100	100	0,20	0,00	0,20	0,20	0,33	0,07	87,00	over load
56	Munzir	6,41	0,08	0,07	Konsisten	45	85	45	90	100	75	0,27	0,00	0,13	0,13	0,13	0,33	68,33	over load
57	Wawan D	6,63	0,13	0,10	Konsisten	35	40	90	80	60	75	0,07	0,33	0,07	0,13	0,20	0,20	59,33	optimal load
58	Usman H	6,41	0,08	0,07	Konsisten	50	30	80	75	45	60	0,13	0,33	0,07	0,13	0,07	0,27	51,00	optimal load
59	Supardi	6,51	0,10	0,08	Konsisten	75	50	70	90	95	100	0,13	0,33	0,27	0,13	0,07	0,07	70,33	over load
60	Irwan	6,53	0,11	0,09	Konsisten	80	50	75	85	100	100	0,20	0,33	0,20	0,13	0,13	0,00	72,33	over load
61	Imam	6,63	0,13	0,10	Konsisten	75	55	70	85	95	100	0,20	0,33	0,20	0,07	0,13	0,07	72,33	over load
62	Samtriawan	6,40	0,08	0,06	Konsisten	50	70	65	75	75	45	0,07	0,27	0,07	0,20	0,33	0,07	69,33	over load
63	Sophian	6,64	0,13	0,10	Konsisten	50	80	65	80	75	50	0,07	0,20	0,13	0,20	0,33	0,07	72,33	over load
64	Cepi Permana	6,30	0,06	0,05	Konsisten	70	75	45	75	75	25	0,07	0,27	0,13	0,33	0,20	0,00	70,67	over load
65	Ade Arif B.	6,40	0,08	0,06	Konsisten	45	80	50	75	75	25	0,07	0,33	0,07	0,20	0,27	0,07	69,67	over load
66	Nanang P.	6,30	0,06	0,05	Konsisten	70	75	50	65	75	30	0,00	0,33	0,13	0,20	0,27	0,07	66,67	over load
67	Marnoto	6,30	0,06	0,05	Konsisten	70	80	50	65	75	25	0,07	0,33	0,13	0,20	0,27	0,00	71,00	over load
68	Agus P	6,30	0,06	0,05	Konsisten	70	75	45	70	75	25	0,00	0,33	0,13	0,20	0,27	0,07	66,67	over load
69	Robi Yansyah	6,30	0,06	0,05	Konsisten	70	80	45	65	75	20	0,13	0,33	0,07	0,20	0,27	0,00	72,00	over load
70	Acep Irham	6,50	0,10	0,08	Konsisten	50	80	50	70	75	25	0,07	0,27	0,07	0,27	0,27	0,07	68,33	over load
71	Erik Hendrik	6,30	0,06	0,05	Konsisten	55	80	60	70	75	15	0,07	0,33	0,13	0,20	0,27	0,00	72,33	over load
72	M. Ridwan	6,30	0,06	0,05	Konsisten	45	75	50	70	75	35	0,07	0,33	0,13	0,20	0,27	0,00	68,67	over load

Tabel 5. Perhitungan frekuensi ekspektasi

	Beban kerja								
	Optimal Load	Overload							
Shift Pagi	1,50	25,50							
Shift Siang	1,22	20,78							
Shift Malam	1,28	21,72							

Maka nilai chi-square adalah sebagai berikut :

$$\chi^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(f_{ij} - e_{ij})^{2}}{e_{ij}}$$

$$= 4,17+0,25+1,22+0,071+1,28+0,075 = 7,06$$

Dan nilai *chi-square* tabel pada $\alpha = 5\%$ dan $\nu = 2-1$ adalah :

$$\chi^2 \alpha(0,05;2-1) = 3,841$$

Karena $\chi^2 > \chi^2_\alpha$, maka Ho ditolak, artinya beban kerja pekerja *dependent* terhadap pembagian *shift* kerja.

c. Jadi kesimpulannya adalah beban kerja pegawai akan tergantung terhadap pembagian *shift* kerja. Atau dengan kata lain penugasan shif kerja (baik shift pagi, shift siang, dan shift malam) akan berpengaruh terhadap beban kerja yang dirasakan oleh pegawai.

3.3. Analisis Masalah

Berdasarkan hasil perhitungan beban kerja pegawai dengan NASA-TLX, kemudian dihitung nilai rata-rata dari penilaian *rating* dan pembobotan terhadap keenam variabel NASA-TLX yang disajikan pada tabel 6 dan tabel 7.

Tabel 6. Nilai Rata-rata dari Penilaian Rating Variabel NASA-TLX

	MD	PD	TD	OP	EF	FR
Total Skor	4165	5290	3885	5265	5400	2570
Rata-rata	57,8	73,5	54,0	73,1	75,0	35,7

Berdasarkan tabel 6 diperoleh tiga penilaian kategori beban pekerjaan yang tinggi, yaitu variabel *Effort* (EF) sebesar 75,0%, *Physical Demand* (PD) sebesar 73,5%, dan *Own Performance* (OP) sebesar 73,1%. Hal ini menunjukkan bahwa diperlukan usaha (EF) dan dukungan tingkat fisik (PD) yang tinggi untuk menjalankan kegiatan pekerjaan pada bagian proses manufaktur tersebut guna mencapai tingkat keberhasilan output (OP) yang tinggi. Sedangkan untuk varibel, *Mental Demands, Temporal Demands* dan *Frustation* tergolong pada tingkatan sedang, dengan nilai masing-masing sebesar 57,8%; 54,0%, dan 35,7%. Hal ini menunjukkan bahwa pegawai dalam melakukan pekerjaannya memerlukan beban mental yang sedang.

Tabel 7. Nilai Rata-rata dari Pembobotan Variabel NASA-TLX

	Katego	ri MEN	ITAL	Kategori FISIK								
	MD	FR	EF	PD	TD	OP						
TOTAL	6,93	3,13	18,33	20,53	7,20	15,67						
Rata-Rata	0,10	0,04	0,25	0,29	0,10	0,22						
		0,394		0,603								
		39,4%	_		60,3%	_						

Berdasarkan tabel 7 disimpulkan bahwa jenis pekerjaan yang dilakukan oleh pegawai di bagian proses manufaktur di PT. Agronesia Divisi Industri Plastik lebih didominasi pekerjaan fisik, yaitu sebesar 60,3% dan pekerjaan mental hanya sebesar 39,4%.

4. KESIMPULAN

Berdasarkan hasil pengamatan dan pengolahan data yang dilakukan,serta didasarkan pada tujuan penelitian yang telah dijelaskan sebelumnya, maka dapat diambil kesimpulan sebagai berikut:

- 1.a). Dari 72 pegawai yang dijadikan sampel pengukuran beban kerja pada bagian proses manufaktur di PT. Agronesia Divisi Industri Plastik terdapat 4 pegawai (6%) menilai beban kerja yang dirasakan *optimal load* (indeks antara 0,40 sampai dengan 0,60), sedangkan sisanya 68 pegawai (94%) menilai beban kerja yang dirasakan *overload* (indeks diatas 0,60).
- b). Dari 6 variabel beban kerja NASA-TLX yang ada, terdapat tiga penilaian kategori beban pekerjaan yang tinggi, yaitu variabel *Effort* (EF) sebesar 75,0%, *Physical Demand* (PD) sebesar 73,5%, dan *Own Performance* (OP) sebesar 73,1%. Hal ini menunjukkan bahwa diperlukan usaha (EF) dan dukungan tingkat fisik (PD) yang tinggi untuk menjalankan kegiatan pekerjaan pada bagian proses manufaktur tersebut guna mencapai tingkat keberhasilan output (OP) yang tinggi. Sedangkan jenis pekerjaan yang dilakukan oleh pegawai di bagian proses manufaktur di PT. Agronesia Divisi Industri Plastik lebih didominasi pekerjaan fisik, yaitu sebesar 60,3% dan pekerjaan mental hanya sebesar 39,4%.

2. Berdasarkan hasil uji *chi-square* bahwa Ho ditolak, artinya beban kerja pegawai *dependent* terhadap pembagian *shift* kerja. Dengan demikian beban kerja pegawai akan berbeda terhadap penugasan *shift* kerja, baik shift pagi, *shift* siang, dan *shift* malam.

DAFTAR PUSTAKA

Hart, S.G and Staveland, L.E, (1988), Aeropace Human Factors Research Division, *NASA-Ames Research Center*, Moffet Field, California.

Hancock, M, (1988), Human Mental Workload, North Holland.

Pulat, B, Mustafa, (1992), Fundamentals Of Industrial Ergonomics, Englewood Cliffs, New Jersey: Prentice Hall Inc.

Sugiyono, (2004), Statistik Nonparametris Untuk Penelitian, CV. Alfabeta, Bandung.