ISSN : 1978-774X

Proceeding, International Seminar on Industrial Engineering and Management Menara Peninsula, Jakarta, August 29-30, 2007

- Since it is dealing with a single factory that produces all required parts that go into making its final product, all materials necessary for production are simultaneously available at time zero or as needed
- All final products are shipped to the customers immediately
- Transportation time between machines is instantaneous
- A machine can only process one job at a time
- Each job has to be performed on a set of machines in a pre-defined technological ordering
- Processing times are known ahead of time
- Each machine is continuously available for production
- · No job splitting is allowed
- There is no job preemption on machines

Model Parameters and Variables

Input Parameters :

- P_{ij} = the j^{ih} sub-job of final product *i*. If j= 0, then it is the final assembly *i*.
- P_{ijkm} = the k^{th} operation of sub-job jbelonging to final product i, where the operation is performed on machine m.
- N = number of final product orders to be satisfied; i = 1, ..., N
- M = number of machines available for production; m = 1, ..., M
- m_{ijk} = the machine required by the k^{th} operation of sub-job *j* belonging to final product *i*.
- n_i = number of nodes or sub-jobs in the BOM for final product *i*. O_{ij} = the set of operations
- O_{ij} = the set of operations required for processing one unit of P_{ij} . H_{ii} = number of units of P_{ij} .
- H_{ij} = number of units of P_{ij} required for meeting the total demand of its direct parent job, if any exists.
- $Z(P_{ij}) =$ the set of parents and grand parents for P_{ij} . $B_i =$ required batch size of \mathcal{G}_{ij} is
- B_i = required batch size of final product *i*.

 Q_i = quantity of P_{ij} required to meet demand.

$$Q_{ij} = B_i * H_{ij} (\prod H_{ik}) \text{ where } \prod H_{ik} \ge I$$

$$P_{ik} \in Z(P_{ij}) P_{ik} \in Z(P_{ij})$$

System Variables :

F

- S_{ijkm} = production start time of the k^{th} operation for P_{ij} on machine m.
- t_{ijkm} = processing time per unit part required by the k^{th} operation of P_{ij} on machine *m*.
- T_{ij} = total processing time required for making one unit of P_{ij} .

$$(T_{ij} = Q_{ij} \sum_{k=1}^{|0_{ij}|} t_{ijkm})$$

= production flow time (makespan).

- α = large positive number
- C_{ijkm} = production completion time of the k^{th} operation for P_{ij} on machine m.
- Rt_{ijkm} = remaining path time for operations k of P_{ij} on m to realize the final product

$$Rt_{ijkm} = Q_{ij} \frac{\left| \mathbf{0}_{ij} \right|}{\mathbf{k}' = \mathbf{k}} + \frac{\sum_{ijk'm} f_{ijk'm}}{\forall Z(P_{ii})} T_{ij}$$

 $X_{ijkqrsm} = 1$, if P_{ijk} proceed P_{qrs} on machine m = 0, otherwise

Model Formulation

The model developed in this study is then formulated as follows:

$Z_{MILP} = Min F$	(1)
$C_{i(j-1)km} - S_{ij1m} \leq 0, \forall i, j$	(1)
$C_{ii}\sigma_{11} = S_{ii} = 0$	(2)
$C_{ij(k-1)m} - S_{ijkm'} \leq 0, \forall i, j, k$	(3)
$C_{i0Km} - F \leq 0, \qquad \forall i$	(4)
$C_{ijkm} - S_{ijkm} = t_{ijkm} * Q_{ij}, \forall i, j, k$	(5)
$C_{qrsm} - C_{ijkm} + \alpha(1 - X_{ijkqrsm}) \ge t_{qrsm}$	sm * O~
vi, j, K, Q, r. S	(6)
$C_{ijkm} - C_{qrsm} + \alpha(X_{ijkqrsm}) \ge t_{ijkm}$	*0
$\forall i, j, k, q, r, s$	
$X_{ijkqrsm} \in \{0, 1\}, integer, \forall i, j, k$	(7)
$Q_{ij} \ge 1$, integer, $\forall i, j$	(8)
-, ,ger, VI,J	(9)